python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2

这篇具有很好参考价值的文章主要介绍了python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  • 2024年4月27日14:32:30----0.9.2

参照模型

以pytorch官网的tutorial为观察对象,链接是https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

模型代码如下

import torch.nn as nn
import torch.nn.functional as F

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size, hidden_size)
        self.h2h = nn.Linear(hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        hidden = F.tanh(self.i2h(input) + self.h2h(hidden))
        output = self.h2o(hidden)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)

安装Netron

pip install netron即可

其他安装方式参考链接
https://blog.csdn.net/m0_49963403/article/details/136242313

写netron代码

随便找一个地方打个点,如sample方法中

import netron
max_length = 20

# Sample from a category and starting letter
def sample(category, start_letter='A'):
    with torch.no_grad():  # no need to track history in sampling
        category_tensor = categoryTensor(category)
        input = inputTensor(start_letter)
        hidden = rnn.initHidden()

        output_name = start_letter

        for i in range(max_length):
#             print("category_tensor",category_tensor.size())
#             print("input[0]",input[0].size())
#             print("hidden",hidden.size())
            
            output, hidden = rnn(category_tensor, input[0], hidden)
            torch.onnx.export(rnn,(category_tensor, input[0], hidden) , f='AlexNet1.onnx')   #导出 .onnx 文件
            netron.start('AlexNet1.onnx') #展示结构图
        
            break
#             print("output",output.size())
#             print("hidden",hidden.size())
#             print("====================")
        
            topv, topi = output.topk(1)
            topi = topi[0][0]
            if topi == n_letters - 1:
                break
            else:
                letter = all_letters[topi]
                output_name += letter
            input = inputTensor(letter)

        return output_name

# Get multiple samples from one category and multiple starting letters
def samples(category, start_letters='ABC'):
    for start_letter in start_letters:
        print(sample(category, start_letter))
        break

samples('Russian', 'RUS')

运行查看结果

结果是在浏览器中,运行成功后会显示:
Serving ‘AlexNet.onnx’ at http://localhost:8080

打开这个网页就可以看见模型结构,如下图

python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2,python,pytorch,python,pytorch,开发语言

需要关注的地方

  1. 关于参数
    如果模型是一个参数的情况下,如下使用就可以了
import torch
from torchvision.models import AlexNet
import netron
model = AlexNet()
input = torch.ones((1,3,224,224))
torch.onnx.export(model, input, f='AlexNet.onnx')
netron.start('AlexNet.onnx')

如果模型有多个参数的情况下,则需要如下用括号括起来,如本文中的例子文章来源地址https://www.toymoban.com/news/detail-861557.html

torch.onnx.export(rnn,(category_tensor, input[0], hidden) , f='AlexNet1.onnx')   #导出 .onnx 文件
netron.start('AlexNet1.onnx') #展示结构图
  1. 如果运行过程中发现报错找不到模型
    有可能是你手动删除了生成的模型,最好的方法是重新生成这个模型,再运行

到了这里,关于python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包