Fast-Planner(一)前端详解kinodynamic A*

这篇具有很好参考价值的文章主要介绍了Fast-Planner(一)前端详解kinodynamic A*。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作为无人机自主运动的入门路径规划算法,详细表述了路径规划的前端和后端,前端为路径搜索,后端未路径优化。具体参考代码。

一、kinodynamic a_star 路径搜索

这里参考的文章是Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments
总的可以概括为融合动力学约束的A*搜索,通过共轭梯度下降求局部最优。

解析kinodynamic_astar.cpp

Pathnode类(文章中motion Primitives)反向链表

class PathNode {
public:
  /* -------------------- */
  Eigen::Vector3i index;  //voxel坐标
  Eigen::Matrix<double, 6, 1> state;  //基元状态,分别为xyz及其一阶导(vel)
  double g_score, f_score;   //代价函数、启发函数
  Eigen::Vector3d input;    //输入,分别为xyz上的二阶导(acc)
  double duration;    //输入持续时间
  double time;  // dyn
  int time_idx;
  PathNode* parent;   //父节点
  char node_state;

  /* -------------------- */
  PathNode() {
    parent = NULL;
    node_state = NOT_EXPAND;
  }
  ~PathNode(){};
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
typedef PathNode* PathNodePtr;

主函数

/*
  kinodynamic A*的主函数
    parameter:
      - start_pt:起点位置
      - start_v: 起始速度
      - start_a: 起始加速度
      - end_pt:  终点位置
      - end_v:   终点速度
      - init:   初始化成功标志位
      - dynamic:动静规划标志位
      - time_start:起始时间
*/
int KinodynamicAstar::search(Eigen::Vector3d start_pt, Eigen::Vector3d start_v, Eigen::Vector3d start_a,
                             Eigen::Vector3d end_pt, Eigen::Vector3d end_v, bool init, bool dynamic,
                             double time_start)

读取传入参数

  //读取传入参数
  start_vel_ = start_v;
  start_acc_ = start_a;

  PathNodePtr cur_node = path_node_pool_[0];  //取出第一个路径点赋给当前节点
  cur_node->parent = NULL;  //父节点
  cur_node->state.head(3) = start_pt;
  cur_node->state.tail(3) = start_v;
  cur_node->index = posToIndex(start_pt); //获得全局坐标系下的位置索引
  cur_node->g_score = 0.0;    //记录当前成本代价

  Eigen::VectorXd end_state(6);
  Eigen::Vector3i end_index;
  double time_to_goal;    //路径规划时间

  end_state.head(3) = end_pt;
  end_state.tail(3) = end_v;
  end_index = posToIndex(end_pt);
  cur_node->f_score = lambda_heu_ * estimateHeuristic(cur_node->state, end_state, time_to_goal);  //计算启发函数
  cur_node->node_state = IN_OPEN_SET; //标记为OPEN
  open_set_.push(cur_node);      //将该点放入OPEN集,即论文中的C
  use_node_num_ += 1;            //扩展点数计数

启发函数

该文利用Pontryagins minimum principle计算从Xc到Xg轨迹的启发函数。笔者根据自身能力进行推导,具体参考A Computationally Efficient Motion Primitive for Quadrocopter Trajectory Generation及D. P. Bertsekas的《动态规划和最优控制》。
3D运动的cost function,Jk为投影到三轴上的加加速度
fast-planner,路径规划、轨迹规划、运动规划,笔记
状态: S k = ( p k , v k , a k ) S_k=(p_k,v_k,a_k) Sk=(pk,vk,ak)
状态方程: S ˙ k = f s ( S k , j k ) = ( v k , a k , j k ) \dot{S}_k=f_s(S_k,j_k)=(v_k,a_k,j_k) S˙k=fs(Sk,jk)=(vk,ak,jk)
构建Hamiltonian函数和协态方程:
fast-planner,路径规划、轨迹规划、运动规划,笔记
求解costate的微分方程得
fast-planner,路径规划、轨迹规划、运动规划,笔记

最佳输入轨迹J*(t)通过求最小化Hamiltonian函数(PMP原理)获得,即
fast-planner,路径规划、轨迹规划、运动规划,笔记

j*(t)为加加速度的轨迹, S 0 = ( p 0 , v 0 , a 0 ) S_0=(p_0,v_0,a_0) S0=(p0,v0,a0)通过积分可以获 a ∗ ( t ) , v ∗ ( t ) , p ∗ ( t ) a^*(t),v^*(t),p*(t) a(t),v(t),p(t)
fast-planner,路径规划、轨迹规划、运动规划,笔记
目标状态 S f = ( p f , v f , a f ) S_f=(p_f,v_f,a_f) Sf=(pf,vf,af)
fast-planner,路径规划、轨迹规划、运动规划,笔记
fast-planner,路径规划、轨迹规划、运动规划,笔记
解得:
fast-planner,路径规划、轨迹规划、运动规划,笔记
fast-planner,路径规划、轨迹规划、运动规划,笔记
FAST-Planner当中最小化加速度,故与上述最小化加加速度不同,文中给出的公式如下:
fast-planner,路径规划、轨迹规划、运动规划,笔记
启发函数代码(即上述使J取最小的T):

/*
  计算启发函数
    parameters:
      - x1,x2:起点和终点状态
      - optimal_time:达到最终点的最优时间
    return:
      - 代价值
*/
double KinodynamicAstar::estimateHeuristic(Eigen::VectorXd x1, Eigen::VectorXd x2,
                                           double&amp; optimal_time) {
  const Vector3d dp = x2.head(3) - x1.head(3);  //位置变化量
  const Vector3d v0 = x1.segment(3, 3);         //起点速度矩阵
  const Vector3d v1 = x2.segment(3, 3);         //终点速度矩阵

  double c1 = -36 * dp.dot(dp);
  double c2 = 24 * (v0 + v1).dot(dp);
  double c3 = -4 * (v0.dot(v0) + v0.dot(v1) + v1.dot(v1));
  double c4 = 0;
  double c5 = w_time_;

  std::vector&lt;double&gt; ts = quartic(c5, c4, c3, c2, c1); //求解获得极值点的T

  double v_max = max_vel_ * 0.5;
  double t_bar = (x1.head(3) - x2.head(3)).lpNorm<Infinity>() / v_max;
  ts.push_back(t_bar);

  double cost = 100000000;
  double t_d = t_bar;

	//将根带回启发函数求最优Ts
  for (auto t : ts) {
    if (t &lt; t_bar) continue;
    double c = -c1 / (3 * t * t * t) - c2 / (2 * t * t) - c3 / t + w_time_ * t;
    if (c &lt; cost) {
      cost = c;
      t_d = t;
    }
  }

  optimal_time = t_d;

  return 1.0 * (1 + tie_breaker_) * cost;
}

启发函数对T求导获得极值点或者鞍点对应的时间T,然后把多个根代回启发函数获得最优时间T。

搜索

循环搜索第一步判断当前节点是否满足停止搜索的要求

   // 判断但前节点是否超出horizon或是离终点较近了
    bool reach_horizon = (cur_node->state.head(3) - start_pt).norm() >= horizon_;
    bool near_end = abs(cur_node->index(0) - end_index(0)) <= tolerance &&
        abs(cur_node->index(1) - end_index(1)) <= tolerance &&
        abs(cur_node->index(2) - end_index(2)) <= tolerance;
    if (reach_horizon || near_end) {
      terminate_node = cur_node;  //判断其中一个达到了要求,将该节点设为终点
      retrievePath(terminate_node);//从终点到起点的反向路径存储到path_nodes_
      if (near_end) {
        // Check whether shot traj exist
        estimateHeuristic(cur_node->state, end_state, time_to_goal);  //计算优化的最小时间
        computeShotTraj(cur_node->state, end_state, time_to_goal);    //带入优化的时间判断轨迹是否合理
        if (init_search) ROS_ERROR("Shot in first search loop!");
      }
    }
    if (reach_horizon) 
    if (near_end) 

其中当满足终点条件时,要重新检查一下轨迹是否合理,即将轨迹带入地图,用到下面这个函数

//将计算得到的最优轨迹带入地图中检查轨迹是否安全,有没有发生碰撞,速度、加速度是否超过限制
bool KinodynamicAstar::computeShotTraj(Eigen::VectorXd state1, Eigen::VectorXd state2,
                                       double time_to_goal) 

当节点不满足终止条件,需要扩展节点,以当前节点为根,离散输入控制量,得到下一状态。

/* ---3)若当前节点没有抵达终点,就要进行节点扩张 ---------- */
    //1、在open_list中删除节点,并在close_list中添加节点
    open_set_.pop();  //弹出该节点
    cur_node->node_state = IN_CLOSE_SET;  //将该节点放入close节点当中
    iter_num_ += 1;

    //2、初始化状态传递
    double res = 1 / 2.0, time_res = 1 / 1.0, time_res_init = 1 / 20.0; //时间常数
    Eigen::Matrix<double, 6, 1> cur_state = cur_node->state;  //当前节点状态
    Eigen::Matrix<double, 6, 1> pro_state;    //下一状态
    vector<PathNodePtr> tmp_expand_nodes;     //临时扩展节点列表
    Eigen::Vector3d um;     //控制量,本文是加速度
    double pro_t;   //扩展节点的时间戳
    vector<Eigen::Vector3d> inputs;
    vector<double> durations; //输入控制量的持续时间

    //3、判断节点没有被扩展过,把这个节点存下来
    if (init_search) {
      inputs.push_back(start_acc_);
      for (double tau = time_res_init * init_max_tau_; tau <= init_max_tau_ + 1e-3;
           tau += time_res_init * init_max_tau_)
        durations.push_back(tau);
      init_search = false;
    } else {
      for (double ax = -max_acc_; ax <= max_acc_ + 1e-3; ax += max_acc_ * res)
        for (double ay = -max_acc_; ay <= max_acc_ + 1e-3; ay += max_acc_ * res)
          for (double az = -max_acc_; az <= max_acc_ + 1e-3; az += max_acc_ * res) {
            um << ax, ay, az;
            inputs.push_back(um);
          }
      for (double tau = time_res * max_tau_; tau <= max_tau_; tau += time_res * max_tau_)
        durations.push_back(tau);
    }

    //4、状态传递循环迭代,检查速度约束,检查碰撞,都通过的话,就计算当前节点的g_score以及f_score.并且对重复的扩展节点进行剪枝
    // cout << "cur state:" << cur_state.head(3).transpose() << endl;
    for (int i = 0; i < inputs.size(); ++i)
      for (int j = 0; j < durations.size(); ++j) {
        um = inputs[i];
        double tau = durations[j];
        stateTransit(cur_state, pro_state, um, tau);  //状态传递,通过前向积分得到扩展节点的位置和速度
        pro_t = cur_node->time + tau;

        // Check inside map range
        Eigen::Vector3d pro_pos = pro_state.head(3);
        if (!edt_environment_->sdf_map_->isInBox(pro_pos)) {
          if (init_search) std::cout << "box" << std::endl;
          continue;
        }

        // Check if in close set
        Eigen::Vector3i pro_id = posToIndex(pro_pos);
        int pro_t_id = timeToIndex(pro_t);
        PathNodePtr pro_node =
            dynamic ? expanded_nodes_.find(pro_id, pro_t_id) : expanded_nodes_.find(pro_id);
        if (pro_node != NULL && pro_node->node_state == IN_CLOSE_SET) {
          if (init_search) std::cout << "close" << std::endl;
          continue;
        }

        // Check maximal velocity
        Eigen::Vector3d pro_v = pro_state.tail(3);
        if (fabs(pro_v(0)) > max_vel_ || fabs(pro_v(1)) > max_vel_ || fabs(pro_v(2)) > max_vel_) {
          if (init_search) std::cout << "vel" << std::endl;
          continue;
        }

        // Check not in the same voxel
        Eigen::Vector3i diff = pro_id - cur_node->index;
        int diff_time = pro_t_id - cur_node->time_idx;
        if (diff.norm() == 0 && ((!dynamic) || diff_time == 0)) {
          if (init_search) std::cout << "same" << std::endl;
          continue;
        }

        // Check safety
        Eigen::Vector3d pos;
        Eigen::Matrix<double, 6, 1> xt;
        bool is_occ = false;
        for (int k = 1; k <= check_num_; ++k) {
          double dt = tau * double(k) / double(check_num_);
          stateTransit(cur_state, xt, um, dt);
          pos = xt.head(3);
          if (edt_environment_->sdf_map_->getInflateOccupancy(pos) == 1 ||
              !edt_environment_->sdf_map_->isInBox(pos)) {
            is_occ = true;
            break;
          }
          if (!optimistic_ && edt_environment_->sdf_map_->getOccupancy(pos) == SDFMap::UNKNOWN) {
            is_occ = true;
            break;
          }
        }
        if (is_occ) {
          if (init_search) std::cout << "safe" << std::endl;
          continue;
        }

        //计算代价值
        double time_to_goal, tmp_g_score, tmp_f_score;
        //计算当前节点的真实代价
        tmp_g_score = (um.squaredNorm() + w_time_) * tau + cur_node->g_score;
        //计算启发函数代价
        tmp_f_score = tmp_g_score + lambda_heu_ * estimateHeuristic(pro_state, end_state, time_to_goal);

        /* ----------5)在循环中对比扩展节点,进行节点剪枝---------- */
        // Compare nodes expanded from the same parent
        bool prune = false;     //剪枝标志位
        for (int j = 0; j < tmp_expand_nodes.size(); ++j) {
          PathNodePtr expand_node = tmp_expand_nodes[j];
          // 首先判断当前临时扩展节点与current node的其他临时扩展节点是否在同一个voxel中,如果是的话就是扩展的节点多余了,就要进行剪枝。
          if ((pro_id - expand_node->index).norm() == 0 &&
              ((!dynamic) || pro_t_id == expand_node->time_idx)) {
            prune = true;
            if (tmp_f_score < expand_node->f_score) {
              expand_node->f_score = tmp_f_score;
              expand_node->g_score = tmp_g_score;
              expand_node->state = pro_state;
              expand_node->input = um;
              expand_node->duration = tau;
              if (dynamic) expand_node->time = cur_node->time + tau;
            }
            break;
          }
        }

        // This node end up in a voxel different from others
        if (!prune) {
          if (pro_node == NULL) {
            pro_node = path_node_pool_[use_node_num_];
            pro_node->index = pro_id;
            pro_node->state = pro_state;
            pro_node->f_score = tmp_f_score;
            pro_node->g_score = tmp_g_score;
            pro_node->input = um;
            pro_node->duration = tau;
            pro_node->parent = cur_node;
            pro_node->node_state = IN_OPEN_SET;
            if (dynamic) {
              pro_node->time = cur_node->time + tau;
              pro_node->time_idx = timeToIndex(pro_node->time);
            }
            open_set_.push(pro_node);

            if (dynamic)
              expanded_nodes_.insert(pro_id, pro_node->time, pro_node);
            else
              expanded_nodes_.insert(pro_id, pro_node);

            tmp_expand_nodes.push_back(pro_node);

            use_node_num_ += 1;
            if (use_node_num_ == allocate_num_) {
              cout << "run out of memory." << endl;
              return NO_PATH;
            }
          }
          // 如果不用剪枝的话,则首先判断当前临时扩展节点pro_node是否出现在open集中 
          else if (pro_node->node_state == IN_OPEN_SET) {
            if (tmp_g_score < pro_node->g_score) {
              // pro_node->index = pro_id;
              pro_node->state = pro_state;
              pro_node->f_score = tmp_f_score;
              pro_node->g_score = tmp_g_score;
              pro_node->input = um;
              pro_node->duration = tau;
              pro_node->parent = cur_node;
              if (dynamic) pro_node->time = cur_node->time + tau;
            }
          } 
          // 如果不是存在于open集的话,则可以直接将pro_node加入open集中
          else {
            cout << "error type in searching: " << pro_node->node_state << endl;
          }
        }
      }
    // init_search = false;
  }

  cout << "open set empty, no path!" << endl;
  cout << "use node num: " << use_node_num_ << endl;
  cout << "iter num: " << iter_num_ << endl;
  return NO_PATH;

获得规划得到的路径点

kinodynamic A*的最后一步

/*  作用:
      完成路径搜索后,按照预设的时间分辨率delta_t,通过节点回溯和状态前向积分得到分辨率最高的路径点。
    param:
      delta_t:时间分辨率
    return:
      state_list=节点扩张的回溯轨迹+两点边界轨迹
*/
std::vector<Eigen::Vector3d> KinodynamicAstar::getKinoTraj(double delta_t) {
  vector<Vector3d> state_list;

  /* ---------- get traj of searching ---------- */
  PathNodePtr node = path_nodes_.back();
  Matrix<double, 6, 1> x0, xt;

  while (node->parent != NULL) {
    Vector3d ut = node->input;
    double duration = node->duration;
    x0 = node->parent->state;

    for (double t = duration; t >= -1e-5; t -= delta_t) {
      stateTransit(x0, xt, ut, t);
      state_list.push_back(xt.head(3));
    }
    node = node->parent;
  }
  reverse(state_list.begin(), state_list.end());

  /* ---------- get traj of one shot ---------- */
  if (is_shot_succ_) {
    Vector3d coord;
    VectorXd poly1d, time(4);

    for (double t = delta_t; t <= t_shot_; t += delta_t) {
      for (int j = 0; j < 4; j++)
        time(j) = pow(t, j);

      for (int dim = 0; dim < 3; dim++) {
        poly1d = coef_shot_.row(dim);
        coord(dim) = poly1d.dot(time);
      }
      state_list.push_back(coord);
    }
  }

  return state_list;
}

第一部分结束,未完待续。。。文章来源地址https://www.toymoban.com/news/detail-861740.html

到了这里,关于Fast-Planner(一)前端详解kinodynamic A*的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • fast-rcnn详解

            R-CNN显著提升了目标检测算法的性能,但因为计算过于复杂,耗时很长,所以在实际的应用系统中,大都无法使用。经过分析可知,R-CNN的复杂性主要来自两个方面:一是需要针对大量的候选框分别进行计算;二是特征提取之后的分类器训练和位置回归,是几个独

    2023年04月08日
    浏览(73)
  • git基础: (fetch first)和(non-fast-forward)问题详解

    当在本地main分支上向远程main仓库push时发生如下问题 To github.com:ReturnTmp/study.git  ! [rejected]        main - main (fetch first) error: failed to push some refs to \\\'github.com:ReturnTmp/study.git\\\' hint: Updates were rejected because the remote contains work that you do hint: not have locally. This is usually caused by another repos

    2024年02月11日
    浏览(35)
  • 深度学习之目标检测Fast-RCNN模型算法流程详解说明(超详细理论篇)

    1.Fast-RCNN论文背景 2. Fast-RCNN算法流程 3.Fast R-CNN 问题和缺点 这篇以对比RCNN来说明,如果你对RCNN网络没太熟悉,可访问这链接,快速了解,点下面链接 深度学习之目标检测R-CNN模型算法流程详解说明(超详细理论篇) 论文地址https://arxiv.org/abs/1504.08083   Fast R-CNN 是一篇由R

    2024年02月11日
    浏览(23)
  • 详解视觉BEV3D检测模型: Fast-BEV: A Fast and Strong Bird‘s-Eye View Perception Baseline

    本文介绍一篇视觉BEV3D检测模型: Fast-BEV ,论文收录于 NeurIPS2022 。 目前大多数现有的BEV感知方案要么需要相当多的资源来执行车端推理,要么性能不高。本文提出了一种简单而有效的框架,称为 Fast-BEV ,它能够在车载芯片上执行更快的BEV感知。为了实现这一目标,本文通过试

    2024年02月02日
    浏览(31)
  • (2)Mission Planner概述

    文章目录 前言 1.1 什么是Mission Planner 1.2 历史 1.3 支持 1.4 浏览文档 Mission Planner 是 ArduPilot 开源 自动驾驶仪 项目的全功能地面站应用程序。本页包含 Mission Planner 的背景信息和本网站的组织结构。 Mission Planner 是用于固定翼、旋翼机和无人车的地面控制站。它仅与 Windows 兼容。

    2024年02月15日
    浏览(26)
  • EM planner 论文阅读

    论文题目:Baidu Apollo EM Motion Planner 0 前言 EM和Lattice算法对比 EM planner Lattice Planner 参数较多(DP/QP,Path/Speed) 参数少且统一化 流程复杂 流程简单 单周期解空间受限 简单场景解空间较大 能适应复杂场景 适合简单场景 1 摘要 基于百度Apollo平台提出的一种实时运动规划系统,该

    2024年02月02日
    浏览(27)
  • EGO_Planner代码学习(二):轨迹服务器ego_planner/traj_server代码流程

    上一节我们学习了EGO_Planner的启动流程,下面我们来看一看 roslaunch ego_planner single_run_in_exp.launch 启动了 ego_planner/traj_server 结点后,该结点都做了什么工作呢 我们查看一下 src/planner/plann_manage 文件夹下的CMakeLists文件,发现 ego_planner/traj_server 是通过编译该文件夹下 src/traj_server

    2024年02月07日
    浏览(28)
  • (6)将Mission Planner连接到Autopilot

    文章目录 前言 5.1 设置连接 5.2 故障处理 5.3 复合连接的故障处理 5.4 相关话题 本文解释了如何将 Mission Planner 连接到 自动驾驶仪 上,以便接收遥测数据并控制飞行器。 ! Note 对于已有 ArduPilot 固件的安装,或没有现有 ArduPilot 固件( without existing ArduPilot firmware )的板子,都有单

    2024年02月14日
    浏览(21)
  • Semantic Kernel 入门系列:? Planner 规划器

    Semantic Kernel 的一个核心能力就是实现“目标导向”的AI应用。 “目标导向”听起来是一个比较高大的词,但是却是实际生活中我们处理问题的基本方法和原则。 顾名思义,这种方法的核心就是先确定目标,然后再寻找实现目标的方法和步骤。这对于人来说的是很自然的事情

    2023年04月16日
    浏览(24)
  • (5)将Mission Planner连接到Autopilot

    文章目录 前言 5.1 设置连接 5.2 故障处理 5.3 复合连接的故障处理 5.4 相关话题 本文解释了如何将 Mission Planner 连接到 自动驾驶仪 上,以便接收遥测数据并控制飞行器。 ! Note 对于已有 ArduPilot 固件的安装,或没有现有 ArduPilot 固件( without existing ArduPilot firmware )的板子,都有单

    2024年02月11日
    浏览(28)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包