Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记

这篇具有很好参考价值的文章主要介绍了Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记,论文阅读笔记,论文阅读,笔记

  • 这是2022年TPAMI上发表的大名鼎鼎的MIRNetv2,是一个通用的图像修复和图像质量增强模型,核心是一个多尺度的网络
    Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记,论文阅读笔记,论文阅读,笔记

  • 网络结构整体是残差的递归,不断把残差展开可以看到是一些残差块的堆叠。核心是多尺度的MRB。网络用的损失函数朴实无华:
    Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记,论文阅读笔记,论文阅读,笔记

  • MRB的核心是RCB和SKFF两个模块,先介绍SKFF,它是用来融合多尺度特征图的,如下所示。这里的特征图是已经上采样到相同尺度了,相加做一个global average pooling和全连接层后,分成两个向量,各自再全连接层一次,然后softmax归一化使得两个向量的加和处处为1,然后进行通道加权后相加。
    Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记,论文阅读笔记,论文阅读,笔记

  • RCB模块如下图所示,具体做什么都能看懂,其实就是卷积加提取了一个C维的通道偏置
    Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记,论文阅读笔记,论文阅读,笔记

  • 训练的时候使用了progressive training,先用小patch训练,慢慢增大patch size

  • 实验结果(我只关注暗图增强)可以看到PSNR还是蛮高的,视觉效果也不错:
    Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记,论文阅读笔记,论文阅读,笔记
    Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记,论文阅读笔记,论文阅读,笔记

  • 启发是,一个高性能的网络,用简单的距离损失函数进行有监督训练,能够产生很好的增强结果文章来源地址https://www.toymoban.com/news/detail-568699.html

到了这里,关于Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • ExposureDiffusion: Learning to Expose for Low-light Image Enhancement论文阅读笔记

    ExposureDiffusion: Learning to Expose for Low-light Image Enhancement论文阅读笔记

    南洋理工大学、鹏城实验室、香港理工大学在ICCV2023发表的暗图增强论文。用diffusion模型来进行raw图像暗图增强,同时提出了一个自适应的残差层用来对具有不同信噪比的不同区域采取不同的去噪策略。 方法的框图如下所示: 一张raw图片可以由信号和噪声组成,其中信号是曝

    2024年02月07日
    浏览(16)
  • 用于图像恢复的图像层次结构的高效和显式建模Efficient and Explicit Modelling of Image Hierarchies for Image Restoration

    用于图像恢复的图像层次结构的高效和显式建模Efficient and Explicit Modelling of Image Hierarchies for Image Restoration

    本文的目的是提出一种机制,在 全局、区域和局部 范围内高效、明确地对图像层次结构进行建模,以 进行图像恢复 。为实现这一目标,我们首先分析自然图像的两个重要属性,包括 跨尺度相似性和各向异性图像特征 。受此启发,我们提出了anchored stripe self-attention,它在

    2024年02月06日
    浏览(10)
  • DiffIR: Efficient Diffusion Model for Image Restoration 利用扩散模型进行图像重建

    DiffIR: Efficient Diffusion Model for Image Restoration 利用扩散模型进行图像重建

    •我们提出了DiffIR,一种强大、简单、高效的基于扩散模型的的图像修复方法。与图像生成不同的是,输入图像的大部分像素都是给定的。因此,我们利用DM强大的映射能力来估计一个紧凑的IPR(IR Prior Representation,图像修复的先验表示)来引导图像修复,从而提高DM在图像修

    2024年02月08日
    浏览(12)
  • 论文阅读 | Restormer: Efficient Transformer for High-Resolution Image Restoration

    论文阅读 | Restormer: Efficient Transformer for High-Resolution Image Restoration

    前言:CVPR2022oral 用transformer应用到low-level任务 low-level task 如deblurringdenoisingdehazing等任务多是基于CNN做的,这样的局限性有二: 第一是卷积操作的感受野受限,很难建立起全局依赖, 第二就是卷积操作的卷积核初始化是固定的,而attention的设计可以通过像素之间的关系自适

    2024年02月05日
    浏览(17)
  • A Unified Conditional Framework for Diffusion-based Image Restoration

    A Unified Conditional Framework for Diffusion-based Image Restoration

    Yi Zhang, CUHK, CN, arXiv2023, Cited:0, Code, Paper 最近,扩散概率模型(Diffusion Probabilistic Models,DPMs)在图像生成任务中表现出了非凡的性能,能够生成高度逼真的图像。当将DPMs用于图像恢复任务时,关键的一点在于如何整合条件信息,以引导DPMs生成准确和自然的输出,这在现有的研

    2024年02月07日
    浏览(13)
  • Lightening Network for Low-Light Image Enhancement 论文阅读笔记

    Lightening Network for Low-Light Image Enhancement 论文阅读笔记

    这是2022年TIP期刊的一篇有监督暗图增强的文章 网络结构如图所示: LBP的网络结构如下: 有点绕,其基于的理论如下。就是说,普通的暗图增强就只是走下图的L1红箭头,从暗图估计一个亮图。但是其实这个亮图和真实的亮图还是有一些差距,怎么弥补呢,可以再进一步学习

    2024年02月16日
    浏览(12)
  • 【论文阅读】Uformer:A General U-Shaped Transformer for Image Restoration

    🐳博客主页:😚睡晚不猿序程😚 ⌚首发时间:2023.6.8 ⏰最近更新时间:2023.6.8 🙆本文由 睡晚不猿序程 原创 🤡作者是蒻蒟本蒟,如果文章里有任何错误或者表述不清,请 tt 我,万分感谢!orz 目录 🚩前言 1. 内容简介 2. 论文浏览 3. 图片、表格浏览 4. 引言浏览 5. 方法 5.

    2024年02月08日
    浏览(15)
  • 图像色彩增强相关论文阅读-Representative Color Transform for Image Enhancement(ICCV2021)

    图像色彩增强相关论文阅读-Representative Color Transform for Image Enhancement(ICCV2021)

    作者:Hanul Kim1, Su-Min Choi2, Chang-Su Kim3, Yeong Jun Koh 单位:Seoul National University of Science and Technology 2Chungnam National University 3Korea University 前人方法都是encode-decode方式,丢失细节;密集转化也限制颜色空间的迁移效果; 本文使用颜色迁移表征(RCT)表征颜色变化,根据输入和表征颜

    2024年02月11日
    浏览(17)
  • 第二章:Learning Deep Features for Discriminative Localization ——学习用于判别定位的深度特征

    第二章:Learning Deep Features for Discriminative Localization ——学习用于判别定位的深度特征

            在这项工作中,我们重新审视了在[13]中提出的全局平均池化层,并阐明了它如何明确地使卷积神经网络(CNN)具有出色的定位能力,尽管它是在图像级别标签上进行训练的。虽然这个技术之前被提出作为一种训练规范化的手段, 但我们发现它实际上构建了一个通

    2024年02月15日
    浏览(13)
  • Progressive Dual-Branch Network for Low-Light Image Enhancement 论文阅读笔记

    Progressive Dual-Branch Network for Low-Light Image Enhancement 论文阅读笔记

    这是22年中科院2区期刊的一篇有监督暗图增强的论文 网络结构如下图所示: ARM模块如下图所示: CAB模块如下图所示: LKA模块其实就是放进去了一些大卷积核: AFB模块如下图所示: 这些网络结构没什么特别的,连来连去搞那么复杂没什么意思,最终预测的结果是两个支路的

    2024年02月16日
    浏览(15)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包