open AI API使用经验

这篇具有很好参考价值的文章主要介绍了open AI API使用经验。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

open AI API

引言

OpenAI提供API接口,允许第三方开发者将GPT-3等模型集成到他们的应用程序和服务中,这种方式更具交互性和灵活性。与Chat GPT提供的聊天界面相比,OpenAI API提供了多种选项和设置,开发人员可以使用这些选项和设置来自定义模型的行为,例如模型的种类、模型的参数和任务定义等。在2023年3月1日,OpenAI开放了GPT-3.5 Turbo模型的API使用,据说这也是ChatGPT中正在使用的模型。使用API收费是每1000个tokens收费0.002美元,换算成中文大约是2分钱700个字。

概念

Tokens

传统意义上来说,GPT 模型使用的是非结构化文本,这些文本在模型中被表示为一连串的「token」标识符 ,open AI 模型将文本分解为tokens来理解和处理,也是模型计费的单位。tokens可以是单词,也可以是字符块。例如,像“pear”这样的简短而常见的单词是单个token,而单词“hamburger”被分解为“ham”,“bur”和“ger” 3个token。给定 API 请求中处理的token数量为输入和输出的总和。

API 调用中的token总数会影响:

  1. API 调用费用(按每个token支付)
  2. API 调用需要多长时间,因为写入更多token需要更多时间
  3. API 调用是否有效,因为总token必须低于模型的最大限制(gpt-3.5-turbo-0301 处理限制为 4096 个tokens)

prompts

提示(prompts),简单来说就是你想让模型输出你要想要的东西,首先需要给模型描述你想要的东西。提示可以是对任务的简短描述或者包含一个或多个输出示例。

Prompt 可能会包含以下几个元素

  • 指令 Instruction :告诉模型你想要它执行的任务,例如:“请将上面的文字翻译成英文:”就是一个 instruction。
  • 上下文 Contenxt :当前对话的上下文就是背景和语境,比如让ChatGPT 进行角色扮演,通过为 AI 分配一个角色的方式引导 AI 给出更准确的输出内容。
  • 输入数据 Input Data :你想要给chatgpt处理的对象,如一段文本、一个问题,例如上文中翻译的文本内容。
  • 输出指示符 Output Indicator:告诉模型你希望得到的输出类型或者格式。比如让模型给你一个列表,或者让模型给你一个由分号分隔的结果,都属于 Output Indicator。
你是一个多标签文本分类系统,请帮我完成中文多标签文本分类任务。
任务要求如下:对输入的句子进行多标签文本分类并按指定格式输出。
支持的分类类别仅限{{ labels|length }}类:{{ labels|join('、') }}。
解释及示例:{{ hint }}
输出格式要求:分类标签列表。

以下是输入句子:{{ text }} 
输出:

Models

下列表格展示了Open AI API 各个模式下的可以使用的模型:

ENDPOINT MODEL NAME 描述
/v1/chat/completions gpt-4, gpt-4-0314, gpt-4-32k, gpt-4-32k-0314, gpt-3.5-turbo, gpt-3.5-turbo-0301 ChatCompletion是一个特定的终端点,主要用于模拟人类对话,例如聊天机器人、客服对话等任务。与Completion不同,ChatCompletion需要处理对话上下文,即对于同一个用户提出的多个问题或回答,需要考虑到之前的对话历史,以便提供更加连贯和准确的回复。
/v1/completions text-davinci-003, text-davinci-002, text-curie-001, text-babbage-001, text-ada-001 completion是一个通用的终端点,主要用于生成文本,例如写作、翻译、摘要等任务。它接受一个文本提示作为输入,然后返回一段完整的文本。
/v1/edits text-davinci-edit-001, code-davinci-edit-001 用户可以将原始文本提交给 API,以获取建议的修改和改进。API 将返回一组编辑建议,这些建议包括替换、删除、插入和重新排列原始文本,
/v1/audio/transcriptions whisper-1 提供音频文件,返回语音的转录文本,价格为每分钟 0.006 美元
/v1/audio/translations whisper-1 提供音频文件,返回另一种语言的转录文本
/v1/fine-tunes davinci, curie, babbage, ada 提供训练数据,设定参数如学习速率、微调轮数、批量大小,对已有的GPT模型进行微调
/v1/embeddings text-embedding-ada-002, text-search-ada-doc-001 提供sentence/paragraph-level embedding。可以将一个或多个文本输入作为请求,并获得与每个文本对应的向量嵌入作为响应。如文本分类、语义搜索、文本相似性计算等。向量嵌入可以被认为是文本在高维空间中的表示,通过计算向量之间的距离或相似度来判断文本之间的关系
/v1/moderations text-moderation-stable, text-moderation-latest 可以将一个或多个文本输入作为请求,并获得每个文本对应的审核结果作为响应。审核结果包括两个部分:是否通过审核和原因。如果文本通过了审核,则结果中的“toxicity”值为0,否则值为1,并且会返回一些相关的信息,例如违规词汇、句子结构、情感分析等。
#查看模型权限
import os
import openai
openai.organization = "YOUR_ORG_ID" #使用自己的ID
openai.api_key = os.getenv("OPENAI_API_KEY") #使用账号下创建的key
openai.Model.list()

使用流程

1.登录open AI 账号获得API keys

生成自己的api_key: https://platform.openai.com/account/api-keys

初始赠送5美金使用额度,额度用完之后需要自行购买,具体的收费价格和模型相关。

open AI API使用经验,人工智能,机器学习,chatgpt

2.接入环境

安装官方的Python库,调用API时需要准备科学上网环境或配置代理

pip install openai

3.API用例

(1)Completion
import os
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
# or openai.api_key = "YOUR OPENAI_API_KEY" 

prompt = """
Decide whether a comment on CSDN sentiment is positive, neutral, or negative.
comment: I want to learn the openai more!
Sentiment:
"""

response = openai.Completion.create(
              model="text-davinci-003",
              prompt=prompt,	
              max_tokens=1024,   
              temperature=0,
              top_p=0.1
            )

print(response)

temperature: 介于 0 和 2 之间。较高的值(如 0.8)将使输出更加随机,而较低的值(如 0.2)将使其更加集中和确定。

top_p:作用效果类似temperature,,其中模型考虑具有top_p概率的tokens。所以 0.1 意味着只考虑包含前 10% 概率的tokens

max_tokens: 生成的最大tokens数量, 加上prompt的tokens后,不能超过模型最大限制。

输出结果:

{
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null,
      "text": "Positive"
    }
  ],
  "created": 1681656672,
  "id": "cmpl-75y0ePNfI8aT41A03W3WpYYwfvcuD",
  "model": "text-davinci-003",
  "object": "text_completion",
  "usage": {
    "completion_tokens": 2,
    "prompt_tokens": 36,
    "total_tokens": 38
  }
}

Process finished with exit code 0


(2)ChatCompletion
content = '''
you are my assistant, Could we talk a little bit about 
the schedule today, what will we do in  the afternoon ?
'''
response = openai.ChatCompletion.create(
  model="gpt-3.5-turbo",
  messages=[{"role": "user", "content": content}],
  temperature=0.3,
  max_tokens=1048,
  top_p=1.0,
)

text = response.choices[0].message["content"]
print(text)

输出结果:

Of course! Can you please provide me with some more information about your schedule today? What activities do you have planned for the morning? This will help me better understand what we can do in the afternoon.
(3)Images

OpenAI API在给定原始图像或提示的情况下创建扩展或生成的图像。

response = openai.Image.create(
  prompt="A super cute girl sitting in a basket of flowers, pop mart style, chibi",
  n=1,
  size="1024x1024"
)
image_url = response['data'][0]['url']
print(image_url)

生成的图片:

open AI API使用经验,人工智能,机器学习,chatgpt

(4)Edit

edit mode如果给出提示和指令,模型将返回经过编辑的版本

mycode = '''
while(!dead) { 
    code(); 
} 
'''

response = openai.Edit.create(
  model="code-davinci-edit-001",
  input=mycode,
  instruction="Fix the code mistakes and optimize it"
)

print(response)

输出结果:

{
  "choices": [
    {
      "index": 0,
      "text": "while(!dead) \n    code();\n"
    }
  ],
  "created": 1681659196,
  "object": "edit",
  "usage": {
    "completion_tokens": 41,
    "prompt_tokens": 35,
    "total_tokens": 76
  }
}

Process finished with exit code 0

常用模型说明:

LATEST MODEL DESCRIPTION MAX TOKENS TRAINING DATA
gpt-3.5-turbo Most capable GPT-3.5 model and optimized for chat at 1/10th the cost of text-davinci-003. Will be updated with our latest model iteration. 4,096 tokens Up to Sep 2021
gpt-3.5-turbo-0301 Snapshot of gpt-3.5-turbo from March 1st 2023. Unlike gpt-3.5-turbo, this model will not receive updates, and will only be supported for a three month period ending on June 1st 2023. 4,096 tokens Up to Sep 2021
text-davinci-003 Can do any language task with better quality, longer output, and consistent instruction-following than the curie, babbage, or ada models. Also supports [inserting] completions within text. 4,097 tokens Up to Jun 2021
text-davinci-002 Similar capabilities to text-davinci-003 but trained with supervised fine-tuning instead of reinforcement learning 4,097 tokens Up to Jun 2021
code-davinci-002 Optimized for code-completion tasks 8,001 tokens Up to Jun 2021

参考

https://platform.openai.com/docs

https://www.dataapplab.com/a-simple-guide-to-openai-api-with-python/文章来源地址https://www.toymoban.com/news/detail-605180.html

到了这里,关于open AI API使用经验的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 人工智能ai写作系统,ai智能写作机器人

    人工智能ai写作系统,ai智能写作机器人

     人工智能AI大数据深度:基于伪原创算法,采用神经网络算法,在超过1535000篇文章中进行自动学习、聚合算法进行人工智能的创建,内容语义不变,媒体阿里、腾讯、百度均于日前在百家号内容创作者盛典上推出人工智能创作支撑平台创作大脑。 智能助手可以为人类创作者

    2024年02月10日
    浏览(16)
  • 【大数据&AI人工智能】机器意识能走多远:未来的人工智能哲学

    机器意识能走多远:未来的人工智能哲学     【摘要】 意识是人类最为神奇的心理能力,也是宇宙中最为神秘的复杂现象。 正因为如此,对于人工智能终极目标的实现而言,开展机器意识也就成为其绕不开的一个前沿性难题。机器意识研究不但对深化人工智能的研究有着重

    2024年02月03日
    浏览(13)
  • 【人工智能】Embodied AI : 人工智能的下一步,已经卷到了机器人了

    The goal of embodied artificial intelligence is to create agents, such as robots, which learn to creatively solve challenging tasks requiring interaction with the environment. 随着科技不断发展,人工智能(AI)已经变得越来越成熟,并在各个领域取得了巨大的突破。从数据分析到语音识别,再到无人驾驶等等,我们

    2024年02月09日
    浏览(7)
  • 【人工智能】谷歌的巴德聊天机器人向公众开放 | Google‘s Bard Chatbot Opens to the Public

    【人工智能】谷歌的巴德聊天机器人向公众开放 | Google‘s Bard Chatbot Opens to the Public

      Google is trying to balance AI progress with caution. 谷歌正试图谨慎地平衡人工智能的进展。 目录 https://bard.google.com/

    2024年02月09日
    浏览(35)
  • 【AI】人工智能复兴的推进器之机器学习

    目录 一、机器学习的定义 二、机器学习的发展历程 2.1 萌芽期(20世纪50年代-60年代) 2.2 符号主义时期(20世纪60年代-80年代) 2.3 统计学习时期(20世纪90年代-21世纪初) 2.4 深度学习时期(21世纪初至今) 三、主要算法 3.1 线性回归(Linear Regression) 3.2 K-均值聚类(K-Means C

    2024年02月04日
    浏览(47)
  • 【AI】了解人工智能、机器学习、神经网络、深度学习

    【AI】了解人工智能、机器学习、神经网络、深度学习

    一、深度学习、神经网络的原理是什么? 深度学习和神经网络都是基于对人脑神经系统的模拟。下面将分别解释深度学习和神经网络的原理。 深度学习的原理: 深度学习是一种特殊的机器学习,其模型结构更为复杂,通常包括很多隐藏层。它依赖于神经网络进行模型训练和

    2024年02月06日
    浏览(53)
  • [当人工智能遇上安全] 8.基于API序列和机器学习的恶意家族分类实例详解

    [当人工智能遇上安全] 8.基于API序列和机器学习的恶意家族分类实例详解

    您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、

    2024年02月09日
    浏览(12)
  • AI人工智能 机器学习 深度学习 学习路径及推荐书籍

    AI人工智能 机器学习 深度学习 学习路径及推荐书籍

    人工智能、机器学习和深度学习覆盖的技术范畴是逐层递减的,三者的关系:人工智能 机器学习 深度学习。 人工智能(ArtificialIntelligence,AI)是最宽泛的概念,是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学 机器学习(MachineLear

    2023年04月24日
    浏览(48)
  • 【大数据&AI人工智能】意识机器:ChatGPT 能否拥有自我意识?

    【大数据&AI人工智能】意识机器:ChatGPT 能否拥有自我意识?

    2022年11月30日,一个现象级应用程序诞生于互联网,这就是OpenAI开发的ChatGPT。从问答到写程序,从提取摘要到论文写作,ChatGPT展现出了多样化的通用智能。于是,微软、谷歌、百度、阿里、讯飞,互联网大佬们纷纷摩拳擦掌准备入场……但是,请先冷静一下…… 现在 all in

    2023年04月26日
    浏览(9)
  • AI人工智能与机器人的探索和应用1.1

    AI人工智能与机器人的探索和应用1.1

    文章来源于:https://mp.weixin.qq.com/s/fqivYVdakVKG-zDVfD4Qzg 研究机器人和人工智能的技术已有多年了,想来想去,觉得还是有必要对过往的技术做一些凝练和总结。在此过程中,除了能够将知识系统化,构建自己的知识体系框架,还可以以写促学,查漏补缺,形成知识武装的坚强壁

    2024年02月04日
    浏览(11)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包