rtl8221b+mcu,2.5g光纤收发器的开发备份

这篇具有很好参考价值的文章主要介绍了rtl8221b+mcu,2.5g光纤收发器的开发备份。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、rtl8221b是一款2.5g的光电转换的phy

系统的构建如下

rtl8221,realtek,phy,单片机,嵌入式硬件

为了省成本,不用mac来对接其中的gmii接口直接接光模块

2、mdio和mdc由mcu的gpio来模拟,在csdn上有很多的文章来参考

mdio的参数如下

rtl8221,realtek,phy,单片机,嵌入式硬件

不想看英文可以参考下面的文章

MDIO(clause 22 与 clause 45)接口简介以及FPGA Verilog 实现_Angry Noob的博客-CSDN博客

MDIO分成Clause 22和Clause 45还有Clause 35等,但是因为这款芯片只提到了22和45并且用22的话需要间接访问13和14寄存器才能正常工作,没有必要弄得这么的复杂,只使用C45即可,gpio的模拟参考linux内核的源码中的mdio-bitbang.c中的代码,如下

// SPDX-License-Identifier: GPL-2.0
/*
 * Bitbanged MDIO support.
 *
 * Author: Scott Wood <scottwood@freescale.com>
 * Copyright (c) 2007 Freescale Semiconductor
 *
 * Based on CPM2 MDIO code which is:
 *
 * Copyright (c) 2003 Intracom S.A.
 *  by Pantelis Antoniou <panto@intracom.gr>
 *
 * 2005 (c) MontaVista Software, Inc.
 * Vitaly Bordug <vbordug@ru.mvista.com>
 */

#include <linux/module.h>
#include <linux/mdio-bitbang.h>
#include <linux/types.h>
#include <linux/delay.h>

#define MDIO_READ 2
#define MDIO_WRITE 1

#define MDIO_C45 (1<<15)
#define MDIO_C45_ADDR (MDIO_C45 | 0)
#define MDIO_C45_READ (MDIO_C45 | 3)
#define MDIO_C45_WRITE (MDIO_C45 | 1)

#define MDIO_SETUP_TIME 10
#define MDIO_HOLD_TIME 10

/* Minimum MDC period is 400 ns, plus some margin for error.  MDIO_DELAY is done twice per period.
 */
#define MDIO_DELAY 250

/* The PHY may take up to 300 ns to produce data, plus some margin
 * for error.
 */
#define MDIO_READ_DELAY 350

/* MDIO must already be configured as output. */
static void mdiobb_send_bit(struct mdiobb_ctrl *ctrl, int val)
{
	const struct mdiobb_ops *ops = ctrl->ops;

	ops->set_mdio_data(ctrl, val);
	ndelay(MDIO_DELAY);
	ops->set_mdc(ctrl, 1);
	ndelay(MDIO_DELAY);
	ops->set_mdc(ctrl, 0);
}

/* MDIO must already be configured as input. */
static int mdiobb_get_bit(struct mdiobb_ctrl *ctrl)
{
	const struct mdiobb_ops *ops = ctrl->ops;

	ndelay(MDIO_DELAY);
	ops->set_mdc(ctrl, 1);
	ndelay(MDIO_READ_DELAY);
	ops->set_mdc(ctrl, 0);

	return ops->get_mdio_data(ctrl);
}

/* MDIO must already be configured as output. */
static void mdiobb_send_num(struct mdiobb_ctrl *ctrl, u16 val, int bits)
{
	int i;

	for (i = bits - 1; i >= 0; i--)
		mdiobb_send_bit(ctrl, (val >> i) & 1);
}

/* MDIO must already be configured as input. */
static u16 mdiobb_get_num(struct mdiobb_ctrl *ctrl, int bits)
{
	int i;
	u16 ret = 0;

	for (i = bits - 1; i >= 0; i--) {
		ret <<= 1;
		ret |= mdiobb_get_bit(ctrl);
	}

	return ret;
}

/* Utility to send the preamble, address, and
 * register (common to read and write).
 */
static void mdiobb_cmd(struct mdiobb_ctrl *ctrl, int op, u8 phy, u8 reg)
{
	const struct mdiobb_ops *ops = ctrl->ops;
	int i;

	ops->set_mdio_dir(ctrl, 1);

	/*
	 * Send a 32 bit preamble ('1's) with an extra '1' bit for good
	 * measure.  The IEEE spec says this is a PHY optional
	 * requirement.  The AMD 79C874 requires one after power up and
	 * one after a MII communications error.  This means that we are
	 * doing more preambles than we need, but it is safer and will be
	 * much more robust.
	 */

	for (i = 0; i < 32; i++)
		mdiobb_send_bit(ctrl, 1);

	/* send the start bit (01) and the read opcode (10) or write (01).
	   Clause 45 operation uses 00 for the start and 11, 10 for
	   read/write */
	mdiobb_send_bit(ctrl, 0);
	if (op & MDIO_C45)
		mdiobb_send_bit(ctrl, 0);
	else
		mdiobb_send_bit(ctrl, 1);
	mdiobb_send_bit(ctrl, (op >> 1) & 1);
	mdiobb_send_bit(ctrl, (op >> 0) & 1);

	mdiobb_send_num(ctrl, phy, 5);
	mdiobb_send_num(ctrl, reg, 5);
}

/* In clause 45 mode all commands are prefixed by MDIO_ADDR to specify the
   lower 16 bits of the 21 bit address. This transfer is done identically to a
   MDIO_WRITE except for a different code. To enable clause 45 mode or
   MII_ADDR_C45 into the address. Theoretically clause 45 and normal devices
   can exist on the same bus. Normal devices should ignore the MDIO_ADDR
   phase. */
static int mdiobb_cmd_addr(struct mdiobb_ctrl *ctrl, int phy, u32 addr)
{
	unsigned int dev_addr = (addr >> 16) & 0x1F;
	unsigned int reg = addr & 0xFFFF;
	mdiobb_cmd(ctrl, MDIO_C45_ADDR, phy, dev_addr);

	/* send the turnaround (10) */
	mdiobb_send_bit(ctrl, 1);
	mdiobb_send_bit(ctrl, 0);

	mdiobb_send_num(ctrl, reg, 16);

	ctrl->ops->set_mdio_dir(ctrl, 0);
	mdiobb_get_bit(ctrl);

	return dev_addr;
}

static int mdiobb_read(struct mii_bus *bus, int phy, int reg)
{
	struct mdiobb_ctrl *ctrl = bus->priv;
	int ret, i;

	if (reg & MII_ADDR_C45) {
		reg = mdiobb_cmd_addr(ctrl, phy, reg);
		mdiobb_cmd(ctrl, MDIO_C45_READ, phy, reg);
	} else
		mdiobb_cmd(ctrl, MDIO_READ, phy, reg);

	ctrl->ops->set_mdio_dir(ctrl, 0);

	/* check the turnaround bit: the PHY should be driving it to zero, if this
	 * PHY is listed in phy_ignore_ta_mask as having broken TA, skip that
	 */
	if (mdiobb_get_bit(ctrl) != 0 &&
	    !(bus->phy_ignore_ta_mask & (1 << phy))) {
		/* PHY didn't drive TA low -- flush any bits it
		 * may be trying to send.
		 */
		for (i = 0; i < 32; i++)
			mdiobb_get_bit(ctrl);

		return 0xffff;
	}

	ret = mdiobb_get_num(ctrl, 16);
	mdiobb_get_bit(ctrl);
	return ret;
}

static int mdiobb_write(struct mii_bus *bus, int phy, int reg, u16 val)
{
	struct mdiobb_ctrl *ctrl = bus->priv;

	if (reg & MII_ADDR_C45) {
		reg = mdiobb_cmd_addr(ctrl, phy, reg);
		mdiobb_cmd(ctrl, MDIO_C45_WRITE, phy, reg);
	} else
		mdiobb_cmd(ctrl, MDIO_WRITE, phy, reg);

	/* send the turnaround (10) */
	mdiobb_send_bit(ctrl, 1);
	mdiobb_send_bit(ctrl, 0);

	mdiobb_send_num(ctrl, val, 16);

	ctrl->ops->set_mdio_dir(ctrl, 0);
	mdiobb_get_bit(ctrl);
	return 0;
}

struct mii_bus *alloc_mdio_bitbang(struct mdiobb_ctrl *ctrl)
{
	struct mii_bus *bus;

	bus = mdiobus_alloc();
	if (!bus)
		return NULL;

	__module_get(ctrl->ops->owner);

	bus->read = mdiobb_read;
	bus->write = mdiobb_write;
	bus->priv = ctrl;

	return bus;
}
EXPORT_SYMBOL(alloc_mdio_bitbang);

void free_mdio_bitbang(struct mii_bus *bus)
{
	struct mdiobb_ctrl *ctrl = bus->priv;

	module_put(ctrl->ops->owner);
	mdiobus_free(bus);
}
EXPORT_SYMBOL(free_mdio_bitbang);

MODULE_LICENSE("GPL v2");

3、配置寄存器

rtl8221,realtek,phy,单片机,嵌入式硬件

 配置任意寄存器,其中的RW是可读可写的,RO是只读的寄存器

先读出它的原始的值

rtl8221,realtek,phy,单片机,嵌入式硬件

如图配置其中的12位的自适应寄存器,只需要将值置位即可,默认值为0x3000,将其关闭之后就成了0x2000,读取数据后通过串口发出如下图所示

输入操作命令,然后正好我的电脑就断网了

rtl8221,realtek,phy,单片机,嵌入式硬件

读取的数据如下图

rtl8221,realtek,phy,单片机,嵌入式硬件

 与设置的值一致,所以成功了,如果是mdio读取的值为0xffff用示波器测试后一直是高电平,那么就需要检查了。

下面例出开发中的问题

1、mdio的数据是全1的数据即0xffff

检查mdio和mdc的接口,我在测试的时候因为没有预留这两个接口的引脚导致我用线引出后手没有拉好直接将mdio口拉掉了,导致在示波器上可以看到波形,但是这个波是没有到phy的

检查phy的(端口)地址,设备地址(寄存器的前导),以及寄存器的地址(address/data),是否正确,可以通过观察led来确定phy是否是正确的地址。

2、led不亮,或者只亮一盏两盏

引起这个问题的因素比较多,因为当时采用的芯片的主频是64m按理来说使用最高的频64m就行了,但是后续的使用发现这个频率很不稳定,在烧写过程中时好时坏,建议使用25的倍数的频率,这里使用50m就行,只要满足mdc所需的0-2.5m即可,我尝试用过250hz和1.5khz,效果都不错。

3、MDI接口的信号有误

MDI即第一张图中的电口,我遇到过几个问题,现在总结,首先是mdi的信道不对,检查引脚mdi_swap的置位与自己设计的是否一致,开始我置位了,但是因为有其他问题我改了这个脚的状态导致硬件工程师用的双绞线没有一起改变,配置成100m的时候信道反了,于是信号灯就不闪了,另外在设计的时候因为丝印错了没有和焊工说明清楚导致电阻过大,信号被严重削弱导致电口信号不通

4、可以通过link status寄存器来调试

link status是一个只读寄存器,可以通过读取这个寄存器的值来确实电口是否link上,这是一个非常有用的寄存器。

补充:

如果想通过i2c访问sfp(光模块)的话,寄存器地址为0xa0和0xa2说明文档在如下的网址上搜索

SFF Specifications | SNIA

SFF-8472和SFF-8042

另外,在测试过程中发现自适应有非常严重的问题只能用1000m,所以需要参考serdes的文档说明来修改寄存器文章来源地址https://www.toymoban.com/news/detail-656214.html

到了这里,关于rtl8221b+mcu,2.5g光纤收发器的开发备份的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 缓冲器/驱动器/收发器IC

    缓冲器/驱动器/收发器IC

    记录学习未使用过的IC,开发使用新的IC,哎,就是玩 本编文章主要介绍缓冲器/驱动器/收发器 FPGA或MCU低驱动能力引脚 单向长距离信号 1.SN74HCT245NSR DIR高电平,A到B可控制,B到A不可控制 DIR低电平,B到A可控制,A到B不可控制 OE高电平,所有通道端口高阻 OE低电平,所有通道端

    2024年02月09日
    浏览(14)
  • CAN收发器与CAN控制器

    CAN收发器是一种用于CAN总线通信的专用芯片,主要用于将CAN控制器和CAN总线物理层之间的信号进行转换和调节。它的主要作用是将CAN控制器输出的数字信号转换为CAN总线所需要的物理信号,同时将CAN总线上接收到的物理信号转换为数字信号,并将其传递给CAN控制器进行处理。

    2024年01月24日
    浏览(10)
  • STM32+收发器实现CAN和485总线

    STM32+收发器实现CAN和485总线

    RS485总线是一种常见的(Recommended Standard)串行总线标准(485是它的标识号),采用平衡发送与差分接收的方式,因此具有抑制共模干扰的能力。CAN是控制器局域网络(Controller Area Network, CAN)的简称,是一种能够实现分布式实时控制的串行通信网络,属于CSMA(多路载波侦听)/CD(冲突检测

    2024年02月05日
    浏览(11)
  • ARINC429总线收发器 -- HI-3593调试记录

    ARINC429总线收发器 -- HI-3593调试记录

    ​ HI-3593是一款ARINC429协议收发器芯片,和之前介绍的HI-3582芯片功能一样,该芯片支持两路接收和一路发送,其中每个接收机具有标签识别、32×32 FIFO和模拟线路接收机。不同的是HI-3593通信接口为SPI总线,可以减少MCU的硬件管脚负担,而且HI-3593片内集成DC/DC 转换器用于产生双

    2024年02月12日
    浏览(9)
  • “GT/Serdes/高速收发器”相关的FPGA调研

    根据FPGA使用的要点,GT/Serdes/高速收发器这样的,进行检索,及FPGA的接口培训信息,整理成表如下: 序号 一级搜集 二级搜集 引申 1 知乎ID FPGA个人练习生 FPGA实现图像去雾 基于暗通道先验算法 纯verilog代码加速 提供2套工程源码和技术支持 没玩过GT资源都不好意思说自

    2024年02月08日
    浏览(11)
  • FPGA的高速收发器(GTX/GTY/GTP)的快速上手教程

    FPGA的高速收发器(GTX/GTY/GTP)的快速上手教程

            工作中有对GT收发器的使用需求, 学习的过程中,看手册,看别人的文章。有些大佬写得非常好,但他们可能不是针对使用来写的,我在实际使用IP核的过程中,还是会有很多疑惑。         所以我就针对怎么使用GTX等IP核写的这几篇文章,希望可以帮助到想快速学

    2024年04月15日
    浏览(13)
  • 赛灵思7系列FPGA GT收发器中的RX均衡器

    赛灵思7系列FPGA GT收发器中的RX均衡器

            串行信号经过传输媒介时,必然伴随着衰减或者扭曲。为了减少信号衰减带来的串行误码率,并且兼顾功耗与性能,GT收发器提供了两种信号改善方法:一种是LPM模式(low-power mode),另一种是DFE模式(判决反馈均衡器 Decision Feedback Equalizer )。         DFE模式

    2024年02月03日
    浏览(12)
  • FPGA-结合协议时序实现UART收发器(一):UART协议、架构规划、框图

    FPGA-结合协议时序实现UART收发器(一):UART协议、架构规划、框图

    记录FPGA的UART学习笔记,以及一些细节处理,主要参考奇哥fpga学习资料。 本次UART主要采用计数器方法实现,实现uart的稳定性发送和接收功能,最后实现串口数据回环进行功能测试。 UART协议如图。 包含:空闲位、起始位、数据位、校验位、停止位、空闲位(一般没有) 对于

    2024年02月08日
    浏览(11)
  • 2023版 STM32实战7 通用同步/异步收发器(串口)F103/F407

    2023版 STM32实战7 通用同步/异步收发器(串口)F103/F407

    -1-通用同步异步收发器 (USART) 能够灵活地与外部设备进行全双工数据交换,满足外部设备对工业标准 NRZ 异步串行数据格式的要求。 -2-硬件流控制一般是关闭的 -3-波特率指单位时间传输bit个数 -4-数据位一般是8位 -5-一般无校验位 -1-参考帮助手册(F1/F4都有) -2-参考库文件注

    2024年02月07日
    浏览(11)
  • UIOTOS前端零代码 第7节:(实践)利用嵌套+收发器组件,零代码实现简单计算器功能

    UIOTOS前端零代码 第7节:(实践)利用嵌套+收发器组件,零代码实现简单计算器功能

    通过嵌套容器嵌套底层页面,再利用收发器组件和工具函数之间的转换,真正做到零代码实现简单计算器功能。 底层页面             步骤1: 打开编辑器,在右边页面中,选择合适的页面路径 新建页面 。 步骤2: 把当前页面命名“按钮”,并缩放至合适的大小,在右边属

    2024年04月14日
    浏览(13)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包