算法面试-深度学习基础面试题整理-AIGC相关(2023.9.01开始,持续更新...)

这篇具有很好参考价值的文章主要介绍了算法面试-深度学习基础面试题整理-AIGC相关(2023.9.01开始,持续更新...)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、stable diffusion和GAN哪个好?为什么 ?

  • Stable diffusion是一种基于随机微分方程的生成方法,它通过逐步增加噪声来扰动原始图像,直到完全随机化。然后,它通过逐步减少噪声来恢复图像,同时使用一个神经网络来预测下一步的噪声分布。Stable Diffusion的优点是可以在连续的潜在空间中生成高质量的图像,而不需要对抗训练或GAN的损失函数。缺点是需要较长的采样时间和较大的模型容量。Stable Diffusion更适合需要高质量和连续性的图像生成任务。
  • GAN是一种基于对抗训练的生成方法,它由一个生成器和一个判别器组成。生成器从一个随机向量中生成图像,判别器从真实数据和生成数据中区分真假。GAN的优点是可以在离散的像素空间中快速生成图像,而且可以通过不同的损失函数和正则化方法来改善生成质量和多样性。GAN的缺点是训练过程可能不稳定,导致模式崩溃或低质量的输出。而且GAN需要仔细调整超参数和损失函数来达到好的效果,这可能很耗时和困难。GAN更适合需要快速和多样性的图像生成任务。
  • 总结如下:Stable diffusion:①训练过程稳定;②可以生成多样性的图像;③适用于图像修复、去噪等任务。④缺点:生成速度相对较慢;GAN:①能生成高质量的图像;②在某些任务上(如图像到图像翻译)表现优秀;③缺点:训练过程可能不稳定,生成的图像多样性不足。
  • 两种方法的优劣取决于具体的应用场景。

2、如何改善GAN的模式坍塌?

模式坍塌是指生成器只能生成有限的或单一的模式,而不能覆盖数据集中的所有模式。这会导致生成的图像缺乏多样性和真实性。改善方法有:

  • 使用wasserstein距离代替JS散度,WGAN;
  • 在梯度上加上惩罚项,WGAN-GP;
  • 引入像素级别的损失,如L1, L2;
  • 引入编码器,将图像域逆向映射到Z域;
  • 引入unrolling loss,预测未来的对策;
  • 引入经验回放,向鉴别器显示旧的假样本
  • 使用多个GAN,为不同模式训练多个GANS;
  • 单边标签平滑,防止鉴别器过度自信。

3、简述对AIGC的理解。

AIGC泛指人工智能和计算机的图形计算两个相结合的领域,通过从人类提供的指令中提取和理解意图信息,并根据其知识和意图信息生成内容来实现的。包括了ChatGPT (文本到文本的对话模型)与 DALL-E-2(文本到图像的生成模型) , Codex(文本到代码的生成模型) ,Dreamfusion (文本到3D图像), Flamingo(图像到文本),Phenaki (文本到视频),AudioLM(文本到音频),Galactica(文本到科学文本),AlphaTensor(自动搜索高性能的矩阵运算逻辑)等模型。AIGC 的目标是使内容创建过程更加高效和易于访问,从而能够以更快的速度制作高质量的内容。为了能够训练这些巨大的模型,必须拥有强大的计算能力和一支技术精湛、经验丰富的数据科学和数据工程团队。AIGC是未来各行各业不可避免的一个趋势,并且将持续智能化。文章来源地址https://www.toymoban.com/news/detail-689258.html

到了这里,关于算法面试-深度学习基础面试题整理-AIGC相关(2023.9.01开始,持续更新...)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 深度学习基础知识整理

    Auto-encoders是一种人工神经网络,用于学习未标记数据的有效编码。它由两个部分组成:编码器和解码器。编码器将输入数据转换为一种更紧凑的表示形式,而解码器则将该表示形式转换回原始数据。这种方法可以用于降维,去噪,特征提取和生成模型。 自编码器的训练过程

    2024年01月17日
    浏览(12)
  • 深度学习面试问题与答案(2023)

    深度学习面试问题与答案(2023)

    如果你正在参加深度学习面试,那么你肯定知道深度学习到底是什么。然而,这个问题的面试官希望你能够给出一个详细的答案,并且附上一个例子。深度学习涉及到处理大量的结构化或非结构化数据,并使用复杂的算法来训练神经网络。它执行复杂的操作来提取隐藏的模式

    2024年02月06日
    浏览(11)
  • 深度学习面试八股文(2023.9.06持续更新)

    深度学习面试八股文(2023.9.06持续更新)

    一、优化器 1、SGD是什么? 批梯度下降(Batch gradient descent):遍历全部数据集算一次损失函数,计算量开销大,计算速度慢,不支持在线学习。 随机梯度下降(Stochastic gradient descent,SGD) 每次随机选择一个数据计算损失函数,求梯度并更新参数,计算速度快,但收敛性能可

    2024年02月09日
    浏览(12)
  • 深度学习优化算法相关文章

    综述性文章 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam 从 SGD 到 Adam —— 深度学习优化算法概览(一)

    2024年02月10日
    浏览(29)
  • 学习深度强化学习---第3部分----RL蒙特卡罗相关算法

    学习深度强化学习---第3部分----RL蒙特卡罗相关算法

    本部分视频所在地址:深度强化学习的理论与实践 在其他学科中的蒙特卡罗法是一种抽样的方法。 如果状态转移概率是已知的,则是基于模型的方法。如果状态转移概率是未知的,则是免模型的方法。动态规划方法无法求解倒立摆问题,即无法处理没有状态转移概率的问题

    2024年02月04日
    浏览(14)
  • 【算法小记】深度学习——循环神经网络相关原理与RNN、LSTM算法的使用

    【算法小记】深度学习——循环神经网络相关原理与RNN、LSTM算法的使用

    文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。 卷积神经网络在图像领域取得了良好的效果,卷积核凭借优秀的特征提取能力通过深层的卷积操作可是实现对矩形张量的复杂计算处理。但是生活中除了图像这样天然以矩阵形

    2024年01月25日
    浏览(12)
  • [java][集合相关—整理1][面试题]java集合框架大厂面试题整理

    Java中集合框架提供了大量的集合类:常见的list ,set, map等 几个相关的大厂面试题:

    2024年04月08日
    浏览(11)
  • ES相关面试问题整理

    ES相关面试问题整理

    索引模板,一种复用机制,就像一些项目的开发框架如 Laravel 一样,省去了大量的重复,体力劳动。当新建一个 Elasticsearch 索引时,自动匹配模板,完成索引的基础部分搭建。 模板定义,看似复杂,拆分来看,主要为如下几个部分: 模板优先级 一个模板可能绝大部分符合新

    2024年02月07日
    浏览(11)
  • es个人整理的相关面试题

    es个人整理的相关面试题

    1、搜索被执行成一个两阶段过程,我们称之为 Query Then Fetch; 2、在初始查询阶段时,查询会广播到索引中每一个分片拷贝(主分片或者副本分片)。 每个分片在本地执行搜索并构建一个匹配文档的大小为 from + size 的优先队列。 PS:在搜索的时候是会查询 Filesystem Cache 的,但

    2024年02月10日
    浏览(11)
  • 【DL】2023年你应该知道的 10 大深度学习算法

    【DL】2023年你应该知道的 10 大深度学习算法

    🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃 🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​ 📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】 ​​  🖍foreword ✔说

    2024年02月15日
    浏览(13)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包