【考研数学】线性代数第六章 —— 二次型(2,基本定理及二次型标准化方法)

这篇具有很好参考价值的文章主要介绍了【考研数学】线性代数第六章 —— 二次型(2,基本定理及二次型标准化方法)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


引言

了解了关于二次型的基本概念以及梳理了矩阵三大关系后,我们继续往后学习二次型的内容。


一、二次型的基本概念及其标准型

1.2 基本定理

定理 1 —— (标准型定理)任何二次型 X T A X \pmb{X}^T\pmb{AX} XTAX 总可以经过可逆的线性变换 X = P Y \pmb{X=PY} X=PY ,即 P \pmb{P} P 为可逆矩阵,把二次型 f ( X ) f(\pmb{X}) f(X) 化为标准型,即 f ( X ) = Y T ( P T A P ) Y = l 1 y 1 2 + l 2 y 2 2 + ⋯ + l m y m 2 , f(\pmb{X})=\pmb{Y}^T(\pmb{P}^T\pmb{AP})\pmb{Y}=l_1y_1^2+l_2y_2^2+\cdots+l_my_m^2, f(X)=YT(PTAP)Y=l1y12+l2y22++lmym2, 其中 m m m 为标准型中非零系数的个数。

定理 2 —— (惯性定理)二次型的标准型的系数中,正、负系数的个数保持不变,分别称为二次型的正、负惯性指数。

定理 3 —— (矩阵合同定理)设 A , B \pmb{A,B} A,B n n n 阶实对称矩阵,则 A ≃ B \pmb{A\simeq B} AB 的充分必要条件是 A , B \pmb{A,B} A,B 的特征值中正、负及零的个数相同。

从这个角度也可以理解昨天那篇文章中,为什么实对称矩阵相似一定合同。因为相似的话特征值都一样了,自然正、负及零的个数相同;反之,合同的话,只是个数相同,不能推出特征值相同。

定理 4 —— 对二次型 f ( x 1 , x 2 , ⋯   , x n ) = X T A X ( A T = A ) f(x_1,x_2,\cdots,x_n)=\pmb{X^TAX(A^T=A)} f(x1,x2,,xn)=XTAX(AT=A) ,一定存在正交矩阵 Q \pmb{Q} Q ,使得经可逆线性变换 X = Q Y \pmb{X=QY} X=QY 后,有 X T A X = Y T ( Q T A Q ) Y = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 , \pmb{X^TAX=Y^T(Q^TAQ)Y}=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2, XTAX=YT(QTAQ)Y=λ1y12+λ2y22++λnyn2, 其中, λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn 为矩阵 A \pmb{A} A 的特征值。

1.3 二次型标准化方法

1. 配方法

即通过配方的方法,把二次型化为若干部分的平方和与差,然后进行变换的方法。

如:设 f ( x 1 , x 2 , x 3 ) = x 1 2 + 2 x 2 2 − 5 x 3 2 − 2 x 1 x 2 + 2 x 2 x 3 = X T A X f(x_1,x_2,x_3)=x_1^2+2x_2^2-5x_3^2-2x_1x_2+2x_2x_3=\pmb{X^TAX} f(x1,x2,x3)=x12+2x225x322x1x2+2x2x3=XTAX ,其中 A = [ 1 − 1 0 − 1 2 1 0 1 − 5 ] , X = [ x 1 x 2 x 3 ] \pmb{A}=\begin{bmatrix} 1 & -1 & 0\\ -1 & 2 & 1\\ 0 & 1 & -5 \end{bmatrix},\pmb{X}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} A= 110121015 ,X= x1x2x3 ,配方得 f ( x 1 , x 2 , x 3 ) = x 1 2 + 2 x 2 2 − 5 x 3 2 − 2 x 1 x 2 + 2 x 2 x 3 = ( x 1 − x 2 ) 2 + ( x 2 − x 3 ) 2 − 6 x 3 2 , f(x_1,x_2,x_3)=x_1^2+2x_2^2-5x_3^2-2x_1x_2+2x_2x_3=(x_1-x_2)^2+(x_2-x_3)^2-6x_3^2, f(x1,x2,x3)=x12+2x225x322x1x2+2x2x3=(x1x2)2+(x2x3)26x32, x 1 − x 2 = y 1 , x 2 − x 3 = y 2 , x 3 = y 3 x_1-x_2=y_1,x_2-x_3=y_2,x_3=y_3 x1x2=y1,x2x3=y2,x3=y3 ,即有 x 1 = y 1 + y 2 − y 3 , x 2 = y 2 − y 3 , x 3 = y 3 x_1=y_1+y_2-y_3,x_2=y_2-y_3,x_3=y_3 x1=y1+y2y3,x2=y2y3,x3=y3 ,用矩阵形式表达,即 X = P Y \pmb{X=PY} X=PY ,其中 P = [ 1 1 − 1 0 1 − 1 0 0 1 ] , Y = [ y 1 y 2 y 3 ] \pmb{P}=\begin{bmatrix} 1 & 1 & -1\\ 0 & 1 & -1\\ 0 & 0 & 1 \end{bmatrix},\pmb{Y}=\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} P= 100110111 ,Y= y1y2y3 。作可逆线性变换 X = P Y \pmb{X=PY} X=PY ,使得 f ( x 1 , x 2 , x 3 ) = y 1 2 + y 2 2 − 6 y 3 2 . f(x_1,x_2,x_3)=y_1^2+y_2^2-6y_3^2. f(x1,x2,x3)=y12+y226y32.

2. 正交变换法

即利用定理 4 ,把二次型标准化。其基本步骤如下:

(1)由特征方程 ∣ λ E − A ∣ = 0 |\lambda \pmb{E-A}|=0 λEA=0 ,求出矩阵 A \pmb{A} A 的特征值 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn

(2)求出方程组 ( λ i E − A ) X = 0 ( i = 1 , 2 , ⋯   , n ) (\lambda_i\pmb{E-A})\pmb{X}=\pmb{0}(i=1,2,\cdots,n) (λiEA)X=0(i=1,2,,n)(重特征值只代一次)的基础解系,从而获得矩阵 A \pmb{A} A 的线性无关的特征向量 ξ 1 , ξ 2 , ⋯   , ξ n \pmb{\xi_1,\xi_2,\cdots,\xi_n} ξ1,ξ2,,ξn

(3)将 ξ 1 , ξ 2 , ⋯   , ξ n \pmb{\xi_1,\xi_2,\cdots,\xi_n} ξ1,ξ2,,ξn 进行施密特正交化(只在重特征值对应的线性无关的特征向量内部进行)和规范化,得到矩阵 A \pmb{A} A 的两两正交规范的特征向量 γ 1 , γ 2 , ⋯   , γ n \pmb{\gamma_1,\gamma_2,\cdots,\gamma_n} γ1,γ2,,γn

(4)令 Q = ( γ 1 , γ 2 , ⋯   , γ n ) \pmb{Q}=(\pmb{\gamma_1,\gamma_2,\cdots,\gamma_n}) Q=(γ1,γ2,,γn) ,则 Q \pmb{Q} Q 为正交矩阵,且 Q T A Q = [ λ 1 ⋱ λ n ] \pmb{Q^TAQ}=\begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} QTAQ= λ1λn

(5)作正交变换 X = Q Y \pmb{X=QY} X=QY ,则 f ( x 1 , x 2 , ⋯   , x n ) = X T A X ⟹ Y T ( Q T A Q ) Y = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f(x_1,x_2,\cdots,x_n)=\pmb{X^TAX\Longrightarrow Y^T(Q^TAQ)Y}=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f(x1,x2,,xn)=XTAXYT(QTAQ)Y=λ1y12+λ2y22++λnyn2

1,采用正交变换法化标准型时,标准型的系数一定为矩阵 A \pmb{A} A 的特征值。配方法则不一定,但是系数中正、负系数的个数是唯一的。
2,二次型的规范型是唯一的。
3,正交变换不改变向量的长度,即 Q \pmb{Q} Q 为正交矩阵,且向量 X , Y \pmb{X,Y} X,Y 满足 X = Q Y \pmb{X=QY} X=QY ,则有 ∣ X ∣ = ∣ Y ∣ |\pmb{X}|=|\pmb{Y}| X=Y 。因为 ∣ X ∣ 2 = X T X = ( Q Y ) T Q Y = Y T ( Q Q ) Y = Y T Y = ∣ Y ∣ 2 |\pmb{X}|^2=\pmb{X}^T\pmb{X}=(\pmb{QY})^T\pmb{QY}=\pmb{Y}^T(\pmb{Q}\pmb{Q)\pmb{Y}}=\pmb{Y}^T\pmb{Y}=|\pmb{Y}|^2 X2=XTX=(QY)TQY=YT(QQ)Y=YTY=Y2 ∣ X ∣ , ∣ Y ∣ > 0 \pmb{|X|,|Y|}>0 X,Y>0 ,故 ∣ X ∣ = ∣ Y ∣ |\pmb{X}|=|\pmb{Y}| X=Y


写在最后

先到这吧,慢慢来,做点题目巩固下。下一篇文章我们来学习关于正定矩阵的内容。文章来源地址https://www.toymoban.com/news/detail-724753.html

到了这里,关于【考研数学】线性代数第六章 —— 二次型(2,基本定理及二次型标准化方法)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 线性代数(应用篇):第五章:特征值与特征向量、第六章:二次型

    线性代数(应用篇):第五章:特征值与特征向量、第六章:二次型

    1.定义 设 A A A 是 n n n 阶方阵, λ λ λ 是一个数,若存在 n n n 维非零列向量 ξ ξ ξ ,使得 A ξ = λ ξ ( ξ ≠ 0 ) Aξ=λξ quad (ξ≠0) A ξ = λ ξ ( ξ  = 0 ) 则称 λ λ λ 是 A A A 的特征值, ξ ξ ξ 是 A A A 的对应于(属于)特征值 λ λ λ 的特征向量。 注: ①只有方阵才有特征值和特征

    2024年02月14日
    浏览(20)
  • 【考研数学二】线性代数重点笔记

    【考研数学二】线性代数重点笔记

    目录 第一章 行列式 1.1 行列式的几何意义 1.2 什么是线性相关,线性无关 1.3 行列式几何意义 1.4 行列式求和 1.5 行列式其他性质 1.6 余子式 1.7 对角线行列式 1.8 分块行列式 1.9 范德蒙德行列式 1.10 爪形行列式的计算 第二章 矩阵 2.1 初识矩阵 2.1.1 矩阵的概念 1.1.2 矩阵的运算规

    2024年04月10日
    浏览(16)
  • 考研数学笔记:线性代数中抽象矩阵性质汇总

    在考研线性代数这门课中,对抽象矩阵(矩阵 A A A 和矩阵 B B B 这样的矩阵)的考察几乎贯穿始终,涉及了很多性质、运算规律等内容,在这篇考研数学笔记中,我们汇总了几乎所有考研数学要用到的抽象矩阵的性质,详情在这里: 线性代数抽象矩阵(块矩阵)运算规则(性

    2024年02月03日
    浏览(19)
  • 【考研数学】线性代数第四章 —— 线性方程组(2,线性方程组的通解 | 理论延伸)

    【考研数学】线性代数第四章 —— 线性方程组(2,线性方程组的通解 | 理论延伸)

    承接前文,继续学习线性方程组的内容,从方程组的通解开始。 (1)基础解系 —— 设 r ( A ) = r n r(A)=rn r ( A ) = r n ,则 A X = 0 pmb{AX=0} A X = 0 所有解构成的解向量组的极大线性无关组称为方程组 A X = 0 pmb{AX=0} A X = 0 的一个基础解系。基础解系中所含有的线性无关的解向量的个

    2024年02月11日
    浏览(21)
  • 【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

    【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

    继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O 方程组 称为 n n n 元齐次线性方程组。 方程组 称为 n n n 元非齐次线性方程组。 方程组(I)又称为方程组(II)对应的齐次线性方程组或导出方程组。 方程组(I)和方程组(II)分别称为齐次线性方程组和非齐次线

    2024年02月11日
    浏览(17)
  • 考研复试——线性代数

    考研复试——线性代数

    由于考研复试的面试老师可能会问一些数学问题,一位学长也跟我说,研究生要不断地和线性代数和概率论打交道,可能这就是老师喜欢问数学问题的原因吧,这里整理一下。 合同矩阵: 余子式: n 阶行列式中,划去元 aij所在的第 i 行与第 j 列的元,剩下的元不改变原来的

    2024年02月19日
    浏览(17)
  • 考研复试——线性代数(2)

    1. 什么是矩阵的秩?如何计算一个矩阵的秩? 矩阵的秩是指 矩阵中线性无关的行或列的最大数量 。具体地说,矩阵的秩等于它的行最简形式或列最简形式中非零行或非零列的数量。 计算矩阵的秩有多种方法,以下是两种常用的方法: 高斯消元法 :将矩阵通过 初等变换 化

    2024年02月16日
    浏览(13)
  • 线性代数——二次型

    学习高等数学和线性代数需要的初等数学知识 线性代数——行列式 线性代数——矩阵 线性代数——向量 线性代数——线性方程组 线性代数——特征值和特征向量 线性代数——二次型 本文大部分内容皆来自李永乐老师考研教材和视频课。 将含有 n n n 个变量 x 1 , x 2 , … ,

    2024年02月15日
    浏览(19)
  • 【线性代数】四、二次型

    【线性代数】四、二次型

    如果系数a ij 全为实数,那么为实二次型。上述二次型展开式可表示用矩阵为 可以看出,二次型矩阵A是一个 对称矩阵 ,也就是满足A T =A,一个实对称矩阵对应的则是一个实二次型。一个二次型有多种写法,也有多个展开式,但是二次型矩阵是唯一的,各个等价的二次型展开

    2024年02月05日
    浏览(15)
  • 线性代数-二次型及其正定性

    线性代数-二次型及其正定性

    二次型:含有n个变量的二次齐次多项式 二次型矩阵:x T Ax,其中A为实对称矩阵 任给一个实二次型,就唯一确定一个实对称矩阵;反之,任给一个实对称矩阵,也可以唯一确认一个实二次型,因此,实二次型与实对称矩阵之间存在一一对应关系, 称实对称矩阵A为二次型f的矩阵,二次型f称为

    2024年02月08日
    浏览(13)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包