动态规划——OJ题(一)

这篇具有很好参考价值的文章主要介绍了动态规划——OJ题(一)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

动态规划——OJ题(一),经典算法试题,动态规划,算法

📘北尘_:个人主页

🌎个人专栏:《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》

☀️走在路上,不忘来时的初心

一、第N个泰波那契数

1、题目讲解

动态规划——OJ题(一),经典算法试题,动态规划,算法

2、思路讲解

  1. 状态表⽰:
    这道题可以「根据题⽬的要求」直接定义出状态表⽰:
    dp[i] 表⽰:第 i 个泰波那契数的值。
  2. 状态转移⽅程:
    题⽬已经⾮常贴⼼的告诉我们了:
    dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
  3. 初始化:
    从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因
    为 dp[-2] 或 dp[-1] 不是⼀个有效的数据。
    因此我们需要在填表之前,将 0, 1, 2 位置的值初始化。题⽬中已经告诉我们 dp[0] = 0,
    dp[1] = dp[2] = 1 。
  4. 填表顺序:
    毫⽆疑问是「从左往右」。
  5. 返回值:
    应该返回 dp[n] 的值。

3、代码实现

普通版

class Solution {
public:
    int tribonacci(int n) {
        if(n==0) return 0;
        if(n==1 || n==2) return 1;

        vector<int> dp(n+1);
        dp[0]=0,dp[1]=1,dp[2]=1;

        for(int i=3;i<=n;i++)
        {
            dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
        }
        return dp[n];

    }
};

空间优化版

class Solution {
public:
    int tribonacci(int n) {
        if(n==0) return 0;
        if(n==1 || n==2) return 1;

        int a=0,b=1,c=1,d=0;

        for(int i=3;i<=n;i++)
        {
           d=a+b+c;
           a=b;
           b=c;
           c=d;
        }
        return d;
    }
};

二、三步问题

1、题目讲解

动态规划——OJ题(一),经典算法试题,动态规划,算法

2、思路讲解

动态规划——OJ题(一),经典算法试题,动态规划,算法

  1. 状态表⽰
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    dp[i] 表⽰:到达 i 位置时,⼀共有多少种⽅法。
  2. 状态转移⽅程
    以 i 位置状态的最近的⼀步,来分情况讨论:
    如果 dp[i] 表⽰⼩孩上第 i 阶楼梯的所有⽅式,那么它应该等于所有上⼀步的⽅式之和:
    i. 上⼀步上⼀级台阶, dp[i] += dp[i - 1] ;
    ii. 上⼀步上两级台阶, dp[i] += dp[i - 2] ;
    iii. 上⼀步上三级台阶, dp[i] += dp[i - 3] ;
    综上所述, dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3] 。
    需要注意的是,这道题⽬说,由于结果可能很⼤,需要对结果取模。
    在计算的时候,三个值全部加起来再取模,即 (dp[i - 1] + dp[i - 2] + dp[i - 3])
    % MOD 是不可取的,同学们可以试验⼀下, n 取题⽬范围内最⼤值时,⽹站会报错 signed
    integer overflow 。
    对于这类需要取模的问题,我们每计算⼀次(两个数相加/乘等),都需要取⼀次模。否则,万⼀
    发⽣了溢出,我们的答案就错了。
  3. 初始化
    从我们的递推公式可以看出, dp[i] 在 i = 0, i = 1 以及 i = 2 的时候是没有办法进⾏
    推导的,因为 dp[-3] dp[-2] 或 dp[-1] 不是⼀个有效的数据。
    因此我们需要在填表之前,将 1, 2, 3 位置的值初始化。
    根据题意, dp[1] = 1, dp[2] = 2, dp[3] = 4 。
  4. 填表顺序
    毫⽆疑问是「从左往右」。
  5. 返回值
    应该返回 dp[n] 的值。

3、代码实现

class Solution {
public:
    int waysToStep(int n) {
        
        if(n==1 || n==2) return n;
        if(n==3)  return 4;
        const int MOD=1e9+7;

        vector<int> dp(n+1);
        dp[1]=1,dp[2]=2,dp[3]=4;

        for(int i=4;i<=n;i++)
        {
           
            dp[i]= ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;
        }
        return dp[n];
    }
};

三、使用最小花费爬楼梯

1、题目讲解

动态规划——OJ题(一),经典算法试题,动态规划,算法

2、思路讲解

方法一:

  1. 状态表⽰:
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    第⼀种:以 i 位置为结尾,巴拉巴拉
    dp[i] 表⽰:到达 i 位置时的最⼩花费。(注意:到达 i 位置的时候, i 位置的钱不需要
    算上)
  2. 状态转移⽅程:
    根据最近的⼀步,分情况讨论:
    ▪ 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置:
    dp[i - 1] + csot[i - 1] ;
    ▪ 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置:
    dp[i - 2] + csot[i - 2] 。
  3. 初始化:
    从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到
    dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。
  4. 填表顺序:
    根据「状态转移⽅程」可得,遍历的顺序是「从左往右」。
  5. 返回值:
    根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

方法二:

  1. 状态表⽰:
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    第⼆种:以 i 位置为起点,巴拉巴拉。
    dp[i] 表⽰:从 i 位置出发,到达楼顶,此时的最⼩花费。
  2. 状态转移⽅程:
    根据最近的⼀步,分情况讨论:
    ▪ ⽀付 cost[i] ,往后⾛⼀步,接下来从 i + 1 的位置出发到终点: dp[i + 1] +
    cost[i] ;
    ▪ ⽀付 cost[i] ,往后⾛两步,接下来从 i + 2 的位置出发到终点: dp[i + 2] +
    cost[i] ;
    我们要的是最⼩花费,因此 dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i] 。
  3. 初始化:
    为了保证填表的时候不越界,我们需要初始化最后两个位置的值,结合状态表⽰易得: dp[n -
    1] = cost[n - 1], dp[n - 2] = cost[n - 2]
  4. 填表顺序:
    根据「状态转移⽅程」可得,遍历的顺序是「从右往左」。
  5. 返回值:
    根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

3、代码实现

方法一:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n=cost.size();
        vector<int> dp(n+1);
        dp[0]=0,dp[1]=0;
        for(int i=2;i<=n;i++)
        {
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[n];        
    }
};

方法二:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n=cost.size();
        vector<int> dp(n);
        dp[n-1]=cost[n-1],dp[n-2]=cost[n-2];
        for(int i=n-3;i>=0;i--)
        {
            dp[i]=cost[i]+min(dp[i+1],dp[i+2]);
        }
        return min(dp[0],dp[1]);
          
    }
};

四、解码方法

1、题目讲解

动态规划——OJ题(一),经典算法试题,动态规划,算法
动态规划——OJ题(一),经典算法试题,动态规划,算法

2、思路讲解

  1. 状态表⽰:
    根据以往的经验,对于⼤多数线性 dp ,我们经验上都是「以某个位置结束或者开始」做⽂章,这
    ⾥我们继续尝试「⽤ i 位置为结尾」结合「题⽬要求」来定义状态表⽰。
    dp[i] 表⽰:字符串中 [0,i] 区间上,⼀共有多少种编码⽅法。

  2. 状态转移⽅程:
    定义好状态表⽰,我们就可以分析 i 位置的 dp 值,如何由「前⾯」或者「后⾯」的信息推导出
    来。
    关于 i 位置的编码状况,我们可以分为下⾯两种情况:
    i. 让 i 位置上的数单独解码成⼀个字⺟;
    ii. 让 i 位置上的数与 i - 1 位置上的数结合,解码成⼀个字⺟。

    下⾯我们就上⾯的两种解码情况,继续分析:
    让 i 位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:
    i. 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解
    码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就可以了。此时 dp[i] = dp[i - 1] ;

    ii. 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么
    此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败
    了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0 。
    让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:
    i. 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以
    解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ] 区间上的解码
    ⽅法,原因同上。此时 dp[i] = dp[i - 2] ;
    ii. 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 … 这⼏种情况),那么此时 [0, i] 区间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0 。

    综上所述: dp[i] 最终的结果应该是上⾯四种情况下,解码成功的两种的累加和(因为我们关⼼
    的是解码⽅法,既然解码失败,就不⽤加⼊到最终结果中去),因此可以得到状态转移⽅程
    ( dp[i] 默认初始化为 0 ):
    i. 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1] ;
    ii. 当 s[i - 1] 与 s[i] 上的数结合后,在 [10, 26] 之间的时候: dp[i] +=
    dp[i - 2] ;
    如果上述两个判断都不成⽴,说明没有解码⽅法, dp[i] 就是默认值 0 。

3、代码实现

优化前:

class Solution {
public:
    int numDecodings(string s) {
        int n=s.size();
        vector<int> dp(n);
        dp[0]=s[0]!='0';

        if(n==1) 
        return dp[0];
        

        if(s[1]!='0' && s[0]!='0') dp[1]++;
        int t=(s[0]-'0')*10+(s[1]-'0');
        if(t>=10 && t<=26) dp[1]++;
        
        for(int i=2;i<n;i++)
        {
            if(s[i]!='0') dp[i]+=dp[i-1];
            int t=(s[i-1]-'0')*10+(s[i]-'0');
            if(t>=10 && t<=26) dp[i]+=dp[i-2];
        }
        return dp[n-1];
    }
};

优化后:文章来源地址https://www.toymoban.com/news/detail-760822.html

class Solution {
public:
        int n=s.size();
        vector<int> dp(n+1);
        dp[0]=1;
        dp[1]=s[1-1]!='0';

        for(int i=2;i<=n;i++)
        {
            if(s[i-1]!='0') dp[i]+=dp[i-1];
            int t=(s[i-2]-'0')*10+(s[i-1]-'0');
            if(t>=10 && t<=26) dp[i]+=dp[i-2];
        }
        return dp[n];
    }
};

到了这里,关于动态规划——OJ题(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 探索经典算法:贪心、分治、动态规划等

    探索经典算法:贪心、分治、动态规划等

    贪心算法是一种常见的算法范式,通常在解决最优化问题中使用。 贪心算法是一种在每一步选择中都采取当前状态下最优决策的算法范式。其核心思想是选择每一步的最佳解决方案,以期望达到最终的全局最优解。这种算法特点在于只考虑局部最优解,而不会回溯或重新考虑

    2024年02月05日
    浏览(12)
  • 【数据结构与算法】三个经典案例带你了解动态规划

    【数据结构与算法】三个经典案例带你了解动态规划

    从表中我们可以看到,最大的公共子串长度为2,一共有两个长度为2的公共子串,分别是第一个字符串的第2个字符到第3个字符和第一个字符串的第3个字符到第4个字符,即 ba 和 ac 根据上面的方法,我们来用代码封装一下求取最大公共子串的函数 function publicStr(s1, s2) { // 创建

    2024年04月09日
    浏览(11)
  • 动态规划——OJ题(一)

    动态规划——OJ题(一)

    📘北尘_ :个人主页 🌎个人专栏 :《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 状态表⽰: 这道题可以「根据题⽬的要求」直接定义出状态表⽰: dp[i] 表⽰:第 i 个泰波那契数的值。 状态转移⽅程: 题⽬已经⾮常贴⼼的

    2024年02月04日
    浏览(10)
  • 链表经典算法OJ题目

    链表经典算法OJ题目

    直接在原链表里删除val元素,然后让val前一个结点和后一个节点连接起来。 这时我们就需要3个指针来遍历链表: pcur  —— 判断节点的val值是否于给定删除的val值相等 prev ——保存pcur的前一个节点,为删除节点后,连接pcur之后的节点做准备 del —— 保存pcur之后的一个节点

    2024年04月26日
    浏览(9)
  • 【动态规划专栏】--简单-- 动态规划经典题型

    【动态规划专栏】--简单-- 动态规划经典题型

    目录 动态规划 动态规划思维(基础) 状态表示(最重要) 状态转移方程(最难) 初始化(细节) 填表顺序(细节) 返回值(结果) 解码方法⭐⭐ 【题目解析】   【算法原理】 C++ 算法代码 复杂度分析 【空间优化 - 滚动数组】 C++ 算法代码 复杂度分析 【DP边界、初始化

    2024年02月08日
    浏览(19)
  • 【数据结构与算法】:10道链表经典OJ

    【数据结构与算法】:10道链表经典OJ

    思路1:遍历原链表,将 val 所在的节点释放掉。(太麻烦) 思路2:创建新链表,再遍历原链表,找到不为 val 的节点尾插到新链表。 思路1代码实现如下: 注意: 1.当链表为空时,直接返回NULL即可。 2.当尾插上最后一个有效节点时,此时它的 next 可能还与最后一个节点相链接,

    2024年04月14日
    浏览(9)
  • 【动态规划专栏】-- 回文串问题 -- 动态规划经典题型

    【动态规划专栏】-- 回文串问题 -- 动态规划经典题型

    目录 动态规划 动态规划思维(基础) 状态表示(最重要) 状态转移方程(最难) 初始化(细节) 填表顺序(细节) 返回值(结果) 回文子串 ⭐⭐ 【题目解析】  【算法原理】 C++ 算法代码  最长回文子串 ⭐⭐  【题目解析】  【算法原理】 C++ 算法代码   回文串分割

    2024年02月08日
    浏览(8)
  • 【动态规划专栏】-- 01 背包问题 -- 动态规划经典题型

    【动态规划专栏】-- 01 背包问题 -- 动态规划经典题型

    目录 背包问题概述 01 背包问题 01背包⭐⭐  【算法原理】 第一问 第二问 C++ 算法代码 复杂度分析 【空间优化 - 滚动数组】 C++ 算法代码 复杂度分析 分割等和子集⭐⭐ 【算法原理】  对于类01背包问题 C++ 算法代码  【空间优化 - 滚动数组】  C++ 算法代码 目标和⭐⭐ 【算

    2024年02月05日
    浏览(11)
  • 单链表相关经典算法OJ题:移除链表元素

    单链表相关经典算法OJ题:移除链表元素

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 题目:移除链表元素 解法一: 解法一的代码实现: 解法二: 解法二代码的实现: 总结 世上有两种耀眼的光芒,一种是正在升起的太阳,一种是正在努力学习编程的你!一个爱学编程的人。各

    2024年02月04日
    浏览(8)
  • 常见面试题--动态规划介绍(附C++源码实现)

    关注我,持续分享逻辑思维管理思维; 可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导; 有意找工作的同学,请参考博主的原创:《面试官心得--面试前应该如何准备》,《面试官心得--面试时如何进行自我介绍》, 《做好面试准备,迎接2024金三银四》。 【图解《

    2024年04月14日
    浏览(13)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包