【国科大课程】AI院 数字图像处理-杨戈、彭思龙

这篇具有很好参考价值的文章主要介绍了【国科大课程】AI院 数字图像处理-杨戈、彭思龙。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2022年秋季《数字图像处理》课程复习整理

课程大纲

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

一、视觉与图像

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

1. 图像格式

PBM(bitmap) PGM(graymap)PPM(pixelmap)

TIFF(无损图像格式)、bmp、jepg、gif、png等

2. 图像获取

像素位深度:

如果8位三通道彩色图像,则变换范围就是
2 8 ∗ 2 8 ∗ 2 8 − 1 2^8*2^8*2^8-1 2828281

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

3. 采样与量化

简单成像模型:

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

采样:空间坐标离散化

量化:采样点的灰度值离散化

空间采样由物理像素决定,灰度采样由模拟-数字决定。

4. 像素间的基本关系

二维平面:4邻域、8邻域

三维空间:27邻域(对应8邻域)

5. 像素集基本运算

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

线性算子:满足齐次性、可加性(回忆矩阵课中)

6. 彩色图像

CMYK比RGB更适合打印

Hue:色调,Saturation:饱和度,Intensity:强度,Lightness:亮度,Value:亮度

二、图像变换与滤波

1. 点扩散函数

psf函数(point spread function)

OTF函数(optical transfer function)就是psf的傅立叶变换,在频域的函数。

一个复杂图像的像I(x,y)可以看作是真实对象O(x,y)和psf函数的卷积。

在频域的乘积就是空间域的卷积

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

其中h(x, y)是degradation退化过程, yeta(x,y)是噪声。一个图像g就是这么构成的。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

2. 空间滤波

卷积要翻转滤波核,并且相关不具有交换律和结合律

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

图像导数的计算:

前向差分、后项差分、中心差分
f ′ ( x ) = f ( x + h ) − f ( x − h ) 2 h + O ( h 2 ) f'(x) = \frac{f(x+h)-f(x-h)}{2h}+O(h^2) f(x)=2hf(x+h)f(xh)+O(h2)
图像求导会放大噪声:

设定前一项为图像,后一项为噪声

那么分量AS>AN,但频率WS<WN
A S s i n ( W s t ) + A N s i n ( W N t ) A_Ssin(W_st)+A_Nsin(W_Nt) ASsin(Wst)+ANsin(WNt)
这样每次求导,前一项都会求出来一个WS,后一项都会求出来一个WN

长远来看,噪声的比例会被方大,因为WS<WN

2.1 高斯滤波器

对于均值滤波器,在频域内是非单调的,这种特性是我们不希望看到的。
国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

因此,考虑高斯滤波器,拥有低通和可分式两个特性。如果方差越大,则会损失越多的高频信息。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

高斯滤波器的窗口大小 = ceiling(3 * sigma) * 2 + 1

原因(3sigma原则)在3sigma范围内就已经包含足够的信息了。

两边两个3sigma再加中间的元素。

2.2 高通滤波器

  1. 梯度锐化(比如梯度超过一定值用梯度替代,其他保持原像素)
  2. Laplacian增强算子(就是加大原先laplacian的中心系数)

3. 一维傅立叶变换 & 采样定理

傅立叶级数:其中e的j theta次方是欧拉公式

其中n代表要展开为n项,T是f(t)的周期

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

傅立叶变换:

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

采样

采样的过程被看作是原函数与脉冲函数的乘积。

经过推导采样后的傅立叶变换是原函数傅立叶变换的无限、周期副本序列,间隔为deltaT。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

采样定理:

而1/deltaT是采样频率,采样频率要高于最大频率的两倍(即三角形的底边),才能防止产生混叠现象。才能成功恢复原始信号。这样的频率叫做奈奎斯特率

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

利用奈奎斯特率采样率恢复原始信号:

直接用H(u)乘采样后信号就可以得到一个周期的原始信号。
国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

有限持续时间函数不可能是带限的(回忆测不准原理

带限的是说在频域上无高频。

4. 二维傅立叶变换 & 采样定理

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

二维傅立叶变换具有可分性:(要会推导)

可以先对行做傅立叶变换,再对列做

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

逆向傅立叶变换步骤:

  1. 取共轭
  2. 做二维离散傅立叶变换
  3. 除MN,取共轭

要让周期移动到M/2的位置,让其中心出现在高频区域
f ( x ) e j 2 π ( μ 0 x / M ) = F ( μ − μ 0 ) f(x)e^{j2\pi(\mu_0x/M)} = F(\mu - \mu_0) f(x)ej2π(μ0x/M)=F(μμ0)
取mu_0是M/2,指数项就是(-1)^x

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

二维F的采样定理就是要在两个方向都大于奈奎斯特率,否则也会出现混叠现象。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

二维傅立叶变换的特性:

对称性、平移不变性、二维卷积定理等。。

FFT: 只需要知道计算复杂度即可,MlogM

5. 图像频率域滤波

步骤:

  1. 给定图像 f 进行傅立叶变换F
  2. 构建频率域滤波器H,乘F。得到结果G
  3. G逆变换回空间域

5.1 低通

理想低通滤波器,在空间域直接截断,在频域会产生振铃现象

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

高斯低通滤波器虽然解决了ringing,但坡度过于平滑,模糊效果强烈。

巴特沃斯滤波器:

当n较大时,逼近于理想低通;当n较小时,逼近于高斯低通

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

相对的,在空域上BLPF就也会有ringing,低阶不明显。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

5.2 其他滤波器

选择性滤波器:带阻、带通(都有理想、高斯和巴特沃斯情况)

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

6. 线性系统补充

线性算子:满足可加性和齐次性的operator

特性1: fixed parameter(g(x+x_0) = H[f(x+x_0)])

特性2: causal

特性3: stable (有界)

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

利用卷积公式和傅立叶变换,就可以推导空域卷积等于频域乘积了。

7. 图像滤波算子

Laplacian算子:就是求导数用的(1,-2,1)的纵横(斜角)的叠加

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

Roberts 只有2*2,检测斜方向梯度

Sobel、Prewitt、Scharr都是可以用来求边缘的

8. 正交变换

一维、二维傅立叶变换是一种正交变换

8.1 一维傅立叶变换

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

A矩阵的每一行都是一个变换核:

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

这里说明,A的第一列是r0,因为A是正交矩阵,第一行是s0。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

8.2 二维傅立叶变换

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

基图像:

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

其他的:

  1. Hartley变换(与傅立叶变换相似,替换掉了复指数函数)

  2. 离散余弦、离散正弦变换

  3. Walsh-Hadamard变换,Slant变换,Haar变换

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

9. 距离变换

就是得到每个像素距离边界的最短距离。

欧氏距离、街区距离、棋盘距离

Hausdorff距离:两个边界,到彼此最小距离的最大值,然后再取max

距离变换局限性:对noise很敏感(可用形态学先去除噪声)

三、图像的统计描述

3.1 特征值、奇异值分解

奇异值分解:与特征值分解不同,是对于
A T A A^TA ATA
的特征值所作出的分解。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

可以看作多个low-rank矩阵的加权和,权重就是对应的奇异值。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

应用:最优逼近、图像压缩、denoising

3.2 图像的空间、统计描述

1.空间描述:邻域等

区域R的边界是指其R与R补集相邻的点集合。

2.统计描述:

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

co-occurrence matrix:记录了出现图像变化的固定特征。

3.3 随机过程

概念:

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

马尔可夫链:

只和上一阶段的状态有关,与再之前的状态无关。

3.4 随机场

通过来描述像素间关系。

MAP,后验就是已经有了当前像素的特征向量f,去估计其标签w。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

MRF:概念

当前像素的类别只依赖于其邻域

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

其中,likelihood假设服从高斯分布。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

关于先验p(w),利用团势能来构建

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

四、图像增强

1. 线性灰度变换

就是成比例,对应即可

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

2. 非线性灰度变换

对数变换
g ( i , j ) = a + l n [ f ( i . j ) + 1 ] b ⋅ l n c g(i,j)=a+\frac{ln[f(i.j)+1]}{b·lnc} g(i,j)=a+blncln[f(i.j)+1]
指数变换
g ( i , j ) = b c [ f ( i , j ) − a ] − 1 g(i,j)=b^{c[f(i,j)-a]}-1 g(i,j)=bc[f(i,j)a]1

3. 直方图

3.1 直方图均衡化

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

3.2 直方图规定化

变成规定形状,突出某些灰度级(是要先做直方图均衡化)

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

4. 彩色图像增强

伪彩色和假彩色增强区别:伪彩色是针对灰度图像处理,而假彩色是针对彩色图像处理的。

4.1 伪彩色

  1. 密度分割法:变换出的彩色数目有限

  2. 灰度-彩色变换合成法:三个通道按照比例合成不同颜色

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

  1. 频率域伪彩色增强

4.2 假彩色

目的:突出感兴趣目标、呈现匹配的颜色

主要是多通道的线性变换

4.3 真彩色

RGB变为HIS,再增强某个分量,再变回RGB

5. 代数运算

相加:多个带noise图像相加,得到清晰图像

相减:去除背景、观察运动图像

相乘:mask

六、形态学处理

结构元:用来探测图像的小图像

1. 膨胀 & 腐蚀

膨胀

  1. 【映射后】结构元和原图像做与(相当于直接做卷积),如果有重叠则为1。
  2. 位移得到的所有图像取并。

腐蚀

  1. 结构元和原图像做与(相当于映射后卷积),如果完全重叠为1。
  2. 【映射后】位移得到的所有图像取交。

(A腐蚀B)补 = (A补)膨胀(B反射)

2. 开、闭运算

开就是先腐蚀再膨胀(能够让突出的部分变平滑)

闭就是先膨胀再腐蚀(能够让断裂的部分变连续)

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

3. hit & miss

击中击不中就是要找到恰好是当前结构的。

因此要正着腐蚀一次,反着腐蚀一次,求交集(都腐蚀到才算是找到了)。

4.应用

4.1 边界提取

原图减去腐蚀(腐蚀掉的部分就是边界)

4.2 区域填充

在要填充部分的内部找一个seed,然后每次膨胀一次与A补求交。循环多次后再与A并

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

4.3 连通分量提取

和区域填充类似,只不过每一次是与原图像求的交集。就可以遍历得到连通分量。

4.4 凸包

每一轮分别用所有结构元进行hit&miss,直到不再变化。然后将每个结构元得到的结果求并。

4.5 细化 & 粗化

遍历所有结构元,在原图减去击中的部分。重复遍历所有结构元,直到图像不再变化。

粗化:每次并上击中的部分。直到不再变化

4.6 骨架提取

  1. 形态学提取

    前两列相减得到第三列,对每一次的结果求并。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

  1. 基于距离变换

    1. 提取图像边界(腐蚀一次取掉的部分)
    2. 对边界二值图求距离变换
    3. 距离变换的局部极大值
    4. 与原图像求交集得到骨架

    其中局部极大值的部分最好是用可以与四周取等的结果来做(不要严格大于)。

    具体的距离变换过程:就是用这样第一个模版,从左上向右下遍历一次。另一个模版右下到左上遍历一次。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

4.7 裁剪

目的就是去掉二值图中小的毛刺。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

5. 灰度图形态学

膨胀:用求最大值来代替求和

腐蚀:用求最小值来代替求和

开运算:就相当于用球在灰度线上滚(去峰值)

闭运算:就相当于用球在灰度线下滚(填坑)

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

图像平滑:先开再闭

图像梯度:膨胀减腐蚀

高帽:原图减开运算,增强阴影细节(留下了峰值)

七、图像分割 & 边缘检测

1. 图像分割

把图像分成各具有同一特性的区域。

基于不连续性(边缘)、相似性(化为相似区域:阈值、区域生长等)

1.1 基于不连续性

1.1.1 奇异性检测

二维:孤立点、线、边缘

小波变换可以检测点、线、边缘的奇异性,可以解析并精确了解局部不连续性。可以检测奇异性、和其阶次

点检测:

​ 利用中心值增强的拉普拉斯模版滤波,响应值超过阈值的话,就相当于匹配上了。

线检测:

​ 利用中间正,两侧负的模版,来检测线条。(平坦区域响应值是0)

边缘检测:

​ 梯形是器械成像结果。

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

一阶导数:

  1. Roberts:2*2,适合处理边缘陡峭、噪声低的图像。
  2. Sobel和Prewitt:二者权值不一样,但都有噪声抑制能力。但出现宽边界

Canny算法步骤:

  1. 高斯滤波器平滑
  2. 计算梯度大小和方向
  3. NMS细化边缘
  4. 双阈值处理(大于hthr的一定是边缘,小于lthr的一定不是边缘,在他们之间的值如果和hthr边缘连接则算作边缘)

二阶导数(过0点就是边界):

  1. Laplacian算子(对noise敏感)
  2. LOG算子(先高斯,再Laplacian)【可能sharp边缘被扔掉】
  3. DOG(差分高斯函数简化LOG)
1.1.2 边缘连接、边界检测

需要将边缘连接完整(因为边缘必须连续且封闭

  1. 可以利用梯度的垂直方向找寻边界,即局部处理。
  2. 可以用Hough变换进行全局处理

Hough变换:

相交直线越多,则xy直线更是我们的解。用极坐标就可以解决垂直问题(盲点)

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

1.2 像素性质(阈值处理)

方法分类:阈值T仅取决于灰度值,则全局阈值;取决于灰度值和局部性质,则局部阈值;取决于坐标xy,则自适应。

  1. 基本全局阈值:划分后,将两类的灰度平均值取平均,再重新划分。(解决不了不均匀亮度)

  2. 基本自适应(分片)

  3. 最佳阈值

国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

​ E1是背景像素被分为前景的错误率,E2是前景像素被分为背景的错误率
国科大图像处理杨戈,Daily Learning,人工智能,计算机视觉,图像处理

另外:如果此处两个概率密度函数都是高斯分布,则结果会怎样?(计算)

若两个sigma相同,则得到单一阈值;再此基础上,若先验P1=P2,则阈值为均值平均

  1. 边界区域选阈值

    改善直方图形状,不考虑内部像素

    优点:可以让两个波峰更加对称、高度接近(不受区域内外的像素个数影响)文章来源地址https://www.toymoban.com/news/detail-761069.html

1.3 搜索区域(基于区域)

  1. 区域生长(种子像素,和并周围相似的像素)
  2. 四叉树分解(划分原图像为4块,如果不满足一致性,则继续分裂成4块。满足了的块就停止。最后所有块都满足一致性。)
  3. 平均灰度方法
  4. PDE方法(连续微分算子代替离散滤波、提取的边缘闭合)
  5. 活动轮廓模型(转化为曲线的能量最小化问题,其中第一项积分代表弧长,第二项代表振荡,第三项是负梯度相关。也就是要让曲线:短+光滑+过梯度大的点)

到了这里,关于【国科大课程】AI院 数字图像处理-杨戈、彭思龙的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数字图像处理第六章——彩色图像处理

    目录 引言 一、彩色基础 二、彩色模型 2.1 RGB彩色模型 2.2 CMY和CMYK彩色模型  2.3 HSI彩色模型 三、伪彩色图像处理 3.1 灰度分层 3.2 灰度到彩色的变换 四、彩色变换 ​编辑色调与色彩校正 五、平滑与锐化 5.1 平滑 5.2 锐化         在图像处理中,彩色的运用受两个主要因素

    2024年02月09日
    浏览(36)
  • 数字图像处理--六、图像压缩

    目录 1.基本概念 1.1 图像压缩概念及其分类 1.2 数据冗余 1.3 图像信息的度量 1.4 图像保真度准则 (Fidelity Criteria) 1.5 图像压缩模型 2.图像压缩方法 2.1Huffman编码 消除编码冗余 2.2算术编码 (Arithmetic Coding) 消除编码冗余 2.3LZW编码 (Lempel-Ziv-Welch coding) 2.4位平面编码 2.5预测编码 预测

    2024年02月12日
    浏览(24)
  • 数字图像处理(番外)图像增强

    图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。 图像对比度计算方式如下: C = ∑ δ δ ( i , j ) P δ ( i , j ) C=displaystylesum_{{delta}}delta(i,j)P_delta(

    2024年02月14日
    浏览(35)
  • 数字信号与图像处理实验三:图像处理基础与图像变换

    ​ 通过本实验加深对数字图像的理解,熟悉MATLAB中的有关函数;应用DCT对图像进行变换;熟悉图像常见的统计指标,实现图像几何变换的基本方法。 ​ 选择两幅图像,读入图像并显示,同时使用Matlab计算图像的大小,灰度平均值、协方差矩阵、灰度标准差和相关系数。 DC

    2024年02月04日
    浏览(46)
  • 基于matlab的数字图像处理之彩色图像处理

    一、实验目的 (1)了解如何利用RGB分量生成简单的图像。 (2)熟练掌握RGB彩色模型转换到HIS彩色模型的过程。 (3)熟练掌握RGB图像的彩色分割。 (4)熟练掌握彩色图像如何在向量空间中进行边缘检测。 二、实验仪器(软件平台)     计算机、MATLAB软件 三、实验原理

    2024年02月06日
    浏览(35)
  • 数字图像处理 - 图像处理结合机器学习的应用示例

            在本文中,特别关注树叶分类机器学习技术的实现。我们的目标是演示如何利用机器学习算法来分析一系列叶子照片,从而实现准确分类并提供对植物领域有价值的算法。         图像处理中机器学习的本质         机器学习使计算机能够学习模式并根据

    2024年02月13日
    浏览(31)
  • 彩色图像处理之彩色图像直方图处理的python实现——数字图像处理

    彩色图像的直方图处理是一种重要的图像处理技术,用于改善图像的视觉效果,增强图像的对比度,或为后续的图像处理任务(如图像分割、特征提取)做准备。彩色图像通常由红色(R)、绿色(G)、蓝色(B)三个颜色通道组成,因此彩色图像的直方图处理相比单色图像更

    2024年01月23日
    浏览(48)
  • 数字图像处理-matlab图像内插

    目标各像素点的灰度值代替源图像中与其最邻近像素的灰度值 参考博客 假设一个2X2像素的图片采用最近邻插值法需要放大到4X4像素的图片,右边该为多少? 最近邻插值法坐标变换计算公式: s r c X = d s t X ∗ ( s r c W i d t h / d s t W i d t h ) srcX=dstX*(srcWidth/dstWidth) src X = d s tX ∗

    2024年02月03日
    浏览(45)
  • 数字图像处理-图像复原与重建

      图像退化过程可以理解为将原始图片 f ( x , y ) f(x,y) f ( x , y ) 经过退化函数 H H H 的处理,在加上一个噪声项从而获得退化后的图像 g ( x , y ) g(x,y) g ( x , y ) 。而复原过程即为结合给定的退化函数 H H H 与噪声 η ( x , y ) eta(x,y) η ( x , y ) 重构原始图像的估计结果 f ^ ( x , y )

    2024年02月10日
    浏览(38)
  • 数字图像处理实验四--图像变换

    (图像变换) 实验内容: 对图像lena、cameraman和face进行傅里叶变换,观察图像能量在频谱图中的分布情况。 利用Matlab生成下列图像,并对其进行旋转30度、90度和120度,然后对他们分别进行傅里叶变换。 对图像lena、cameraman和face用DCT变换进行图像压缩,舍掉的变换系数分别小

    2024年04月14日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包