R实战 | 限制性立方样条(RCS)

这篇具有很好参考价值的文章主要介绍了R实战 | 限制性立方样条(RCS)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

带权重的限制立方样条代码,机器学习,python,人工智能,大数据,数据挖掘

RCS

在科学研究中,我们经常构建回归模型来分析自变量因变量之间的关系。大多数的回归模型有一个重要的假设就是自变量和因变量呈线性关联。当自变量和因变量之间为非线性关系时,可以将连续型变量转化为分类变量,但是分类变量的类别数目以及节点位置的选择一般会带有主观性并且分类变量会损失部分信息;也可以直接拟合自变量和因变量之间的非线性关系,但是直接构建多项式回归可能存在过度拟合、共线性等问题。因此,一个更好的解决方法是拟合自变量与因变量之间的非线性关系,「限制性立方样条」(Restricted cubic spline,RCS)就是分析非线性关系的最常见的方法之一。

样条(spline)原本是指是一种灵活的细木条或金属条,用来绘制平滑曲线。样条曲线本质是一个分段多项式函数,此函数受限于某些控制点,称为 “节点”,节点放置在数据范围内的多个位置,多项式的类型以及节点的数量和位置决定了样条曲线的类型。立方则指的是 函数为3次多项式。限制是在回归样条的基础上附加要求:样条函数在自变量数据范围两端的两个区间 [X1,X2)(Xn-1,Xn] 内是线性函数。

带权重的限制立方样条代码,机器学习,python,人工智能,大数据,数据挖掘
RCS曲线

RCS节点的数量比位置更重要。由于节点个数的选择和自由度有关, 所以当样本量比较大的时候可以取较多的节点。但是节点越多, 自由度越大, 模型越复杂, 越难解在「«Regression Modeling Strategies»」这本书中,Harrell 建议节点数为4时,模型的拟合效果较好,即同时可以兼顾曲线的平滑程度以及避免过拟合造成的精确度降低。当样本量较大时,5个节点是更好的选择。小样本(n<30)可以选择3个节点。当节点的个数为2时,得到的拟合曲线就是一条直线。大多数研究者推荐的节点为3-5个。带权重的限制立方样条代码,机器学习,python,人工智能,大数据,数据挖掘

一个例子

Lee DH, Keum N, Hu FB, et al. Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. BMJ. 2018;362:k2575. Published 2018 Jul 3. doi:10.1136/bmj.k2575

带权重的限制立方样条代码,机器学习,python,人工智能,大数据,数据挖掘
Association of predicted body composition and  body mass index (BMI)* with all cause mortality in men
带权重的限制立方样条代码,机器学习,python,人工智能,大数据,数据挖掘

如图,为了探究预测的FM、LBM和BMI与男性全因死亡率的关系,作者分别对这三个因素做了RCS分析。

RCS实战

#加载所需要的包
library(ggplot2)
#install.packages('rms')
library(rms)   
# 导入示例数据
data <- read.csv('test.csv')
head(data)
> head(data)
       age    sex      time death
1 60.57519   Male  3.094579     1
2 42.11447   Male  1.574237     0
3 54.86611   Male  3.239313     0
4 55.82207   Male 12.495977     0
5 52.48256 Female  3.252534     0
6 46.12436   Male  2.836695     0
# 对数据进行打包,整理
dd <- datadist(data) #为后续程序设定数据环境
options(datadist='dd') #为后续程序设定数据环境
# 拟合模型
fit<- cph(Surv(time,death) ~ rcs(age,4) + sex,data=data)  # 节点数设为4
# 非线性检验
# P<0.05为存在非线性关系
anova(fit)
> anova(fit)
                Wald Statistics          Response: Surv(time, death) 

 Factor     Chi-Square d.f. P     
 age        57.75      3    <.0001
  Nonlinear  8.17      2    0.0168
 sex        18.75      1    <.0001
 TOTAL      75.63      4    <.0001
# 查看HR预测表
# 看一下预测的HR所对因的age
HR<-Predict(fit, age,fun=exp,ref.zero = TRUE)
head(HR)
> head(HR)
       age  sex      yhat     lower    upper
1 19.71985 Male 0.7087866 0.2403429 2.090257
2 20.00869 Male 0.7052492 0.2429359 2.047356
3 20.29754 Male 0.7017294 0.2455536 2.005363
4 20.58638 Male 0.6982271 0.2481960 1.964258
5 20.87523 Male 0.6947423 0.2508632 1.924024
6 21.16408 Male 0.6912750 0.2535552 1.884643

Response variable (y):  

Adjust to: sex=Male  

Limits are 0.95 confidence limits
# 绘图
ggplot()+
  geom_line(data=HR, aes(age,yhat),
            linetype="solid",size=1,alpha = 0.7,colour="#0070b9")+
  geom_ribbon(data=HR, 
              aes(age,ymin = lower, ymax = upper),
              alpha = 0.1,fill="#0070b9")+
  theme_classic()+
  geom_hline(yintercept=1, linetype=2,size=1)+
  geom_vline(xintercept=48.89330,size=1,color = '#d40e8c')+ #查表HR=1对应的age
  labs(title = "Stroke Risk", x="Age", y="HR (95%CI)")
带权重的限制立方样条代码,机器学习,python,人工智能,大数据,数据挖掘
RCS1

可以看到,年龄<49岁,死亡风险随年龄变化不是很明显;年龄>49岁后,死亡风险随年龄的增加而增加。

分组

### 性别分组
HR1 <- Predict(fit, age, sex=c('Male','Female'),
               fun=exp,type="predictions",
               ref.zero=TRUE,conf.int = 0.95,digits=2)
HR1
ggplot()+
  geom_line(data=HR1, aes(age,yhat, color = sex),
            linetype="solid",size=1,alpha = 0.7)+
  geom_ribbon(data=HR1, 
              aes(age,ymin = lower, ymax = upper,fill = sex),
              alpha = 0.1)+
  scale_color_manual(values = c('#0070b9','#d40e8c'))+
  scale_fill_manual(values = c('#0070b9','#d40e8c'))+
  theme_classic()+
  geom_hline(yintercept=1, linetype=2,size=1)+
  labs(title = "Stroke Risk", x="Age", y="HR (95%CI)")
带权重的限制立方样条代码,机器学习,python,人工智能,大数据,数据挖掘
RCS2

示例数据和代码领取

点赞在看 本文,分享至朋友圈集赞25个保留30分钟,截图发至微信mzbj0002领取。

「木舟笔记2022年度VIP可免费领取」

木舟笔记2022年度VIP企划

「权益:」

  1. 「2022」年度木舟笔记所有推文示例数据及代码(「在VIP群里实时更新」)。

    带权重的限制立方样条代码,机器学习,python,人工智能,大数据,数据挖掘
    资源合集
  2. 木舟笔记「科研交流群」

  3. 「半价」购买跟着Cell学作图系列合集(免费教程+代码领取)|跟着Cell学作图系列合集。

「收费:」

「99¥/人」。可添加微信:mzbj0002 转账,或直接在文末打赏。

参考

  1. https://blog.csdn.net/weixin_43645790/article/details/125285467

  2. 限制性立方样条图,一种美的不行的趋势性分析方法(附R语言详细教程

  3. Restricted cubic splines. A spline is a drafting tool for drawing… | by Peter Flom | Towards Data Science

  4. R语言绘制限制性立方样条(Restricted cubic spline,RCS) - 简书 (jianshu.com)

往期内容

  1. CNS图表复现|生信分析|R绘图 资源分享&讨论群!

  2. 组学生信| Front Immunol |基于血清蛋白质组早期诊断标志筛选的简单套路

  3. (免费教程+代码领取)|跟着Cell学作图系列合集

  4. Q&A | 如何在论文中画出漂亮的插图?

  5. 跟着 Cell 学作图 | 桑葚图(ggalluvial)

  6. R实战 | Lasso回归模型建立及变量筛选

  7. 跟着 NC 学作图 | 互作网络图进阶(蛋白+富集通路)(Cytoscape)

  8. R实战 | 给聚类加个圈圈(ggunchull)

  9. R实战 | NGS数据时间序列分析(maSigPro)

  10. 跟着 Cell 学作图 | 韦恩图(ggVennDiagram)文章来源地址https://www.toymoban.com/news/detail-794595.html


带权重的限制立方样条代码,机器学习,python,人工智能,大数据,数据挖掘
木舟笔记矩阵

到了这里,关于R实战 | 限制性立方样条(RCS)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • R语言绘制限制立方条图2(基于logistic回归和线性回归)

    R语言绘制限制立方条图2(基于logistic回归和线性回归)

    临床上,因变量和临床的结局有时候不是线性关系,而回归模型有一个重要的假设就是自变量和因变量呈线性关联,因此非线性关系模型用回归分析来拟合受到限制。因此,一个更好的解决方法是拟合自变量与因变量之间的非线性关系,限制性立方(Restricted cubic spline,RCS)就是

    2023年04月14日
    浏览(8)
  • OllyDbg 使用 快捷键 界面 实战:修改数据 修改代码 获取正确序列号,重要数据等 跳过关键验证 改试用期 解锁限制的功能 安防安全行业基础

    OllyDbg 使用 快捷键 界面 实战:修改数据 修改代码 获取正确序列号,重要数据等 跳过关键验证 改试用期 解锁限制的功能 安防安全行业基础

    1、按住F8直到 找到位置 (弹出一个MessageBox窗口) 2、再次,进入到位置里, 找到要改的值 3、修改值(根据数据地址,到数据面板 按下Ctrl+G 输入 地址 鼠标选中要改的地方,按下空格键输入要改动字符。) 4、永久保存(选中改过的部分–右键选择复制到可执行程序–备份

    2024年02月21日
    浏览(18)
  • 基于MATLAB的三维数据插值拟合与三次样条拟合算法(附完整代码)

    基于MATLAB的三维数据插值拟合与三次样条拟合算法(附完整代码)

    目录 一. 三维插值 例题1 二. 高维度插值拟合 格式一 格式二 格式三 格式四 格式五 例题2 三. 单变量三次样条插值 例题3 例题4 四. 多变量三次样条插值 例题6 首先三维网格生成是利用 meshgrid() 函数,在MATLAB中调用格式如下: 三维插值运算,主要利用griddata()函数与interp()函数

    2024年02月14日
    浏览(13)
  • 【计算机图形学】【实验报告】太阳系绘制、B样条曲线绘制(附代码)

    【计算机图形学】【实验报告】太阳系绘制、B样条曲线绘制(附代码)

    实 验 报 告 一、实验目的 掌握三维图形的显示原理和方法,掌握三维观察的原理和方法; 掌握OpenGL中矩阵堆栈函数的使用,会使用堆栈函数进行复杂场景的组装。 掌握OpenGL中三维观察变换常用的函数的使用方法,了解三维模型的贴图方法; 掌握自由曲线的生成方法,熟练

    2024年02月10日
    浏览(15)
  • 空间权重矩阵构建(Stata代码)

    整理了一下几个空间权重矩阵生成的Stata代码,小伙伴们仅供参考哈。

    2024年02月11日
    浏览(11)
  • 怎样计算权重?——层次分析法、熵值法:工具+数据+案例+代码

    怎样计算权重?——层次分析法、熵值法:工具+数据+案例+代码

    1权重系数的计算 计算权重是一种常见的分析方法,在实际研究中,需要结合数据的特征情况进行选择,比如数据之间的波动性是一种信息量,那么可考虑使用CRITIC权重法或信息量权重法;也或者专家打分数据,那么可使用AHP层次法或优序图法。 结合各类方法计算权重的原理

    2024年02月05日
    浏览(61)
  • 【心电图信号压缩】ECG信号压缩与通过三次样条近似重建的ECG信号压缩研究(Matlab代码实现)

    【心电图信号压缩】ECG信号压缩与通过三次样条近似重建的ECG信号压缩研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 心电图

    2024年02月13日
    浏览(13)
  • 穿越火线(CF) AI 自瞄 代码 权重 数据集 亲测可用(结尾有资源)

    穿越火线(CF) AI 自瞄 代码 权重 数据集 亲测可用(结尾有资源)

    本人热衷玩CF,同时为一名程序员,近期听说AI霸占FPS游戏,本着学习的态度,特来测试 不喜欢看过程的小伙伴直接看最下面 采用yolov5模型架构 对过程感兴趣的小伙伴下文自行学习 https://zhuanlan.zhihu.com/p/172121380 内部代码是根据游戏特色改动过的,大致结构如下 权重是通过

    2024年02月05日
    浏览(47)
  • 【综合评价分析】熵权算法确定权重 原理+完整MATLAB代码+详细注释+操作实列

    【综合评价分析】熵权算法确定权重 原理+完整MATLAB代码+详细注释+操作实列

    【综合评价分析】 熵权算法 确定权重 原理+完整MATLAB代码+详细注释+操作实列 文章目录 1. 熵权法确定指标权重 (1)构造评价矩阵 Ymn (2)评价矩阵标准化处理 (3)计算指标信息熵值 Mj (4)计算各指标权重 Nj 2.完整代码 2.1 熵权法(正向化指标) 2.2熵权法(负向化指标)

    2024年01月21日
    浏览(8)
  • (4)(4.6) 强制性硬件配置

    (4)(4.6) 强制性硬件配置

    文章目录 前言 1 ArduPilot操作的简单概述 2 框架类和类型配置 3 电机编号和方向 4 无线电控制校准 5 加速度计校准 6 罗盘校准 7 遥控发射器飞行模式配置 8 电子调速器(ESC)校准 9 配置电机范围(可选) 10 失控保护机制 11 飞行模式 前言 作为 首次安装 的一部分,你将需要配置一些

    2023年04月19日
    浏览(9)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包