BasicSR的使用过程

这篇具有很好参考价值的文章主要介绍了BasicSR的使用过程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        由于最近在研究BasicSR的超分辨率的各种模型,在测试各种实验的过程中出现过很多的问题,下面针对这些问题说一下解决方式。比如像我本次遇到的问题,当输入的图像数据特别小时我们应该如何处理。本文仅针对使用BasicSR进行一个模型使用和模型对比的安装、使用、一些注意实现进行一部分的描述。

 1、安装

王鑫涛大佬的文档中给出了安装的教程,由于可能有很多同学不是很喜欢去下载官方的文档来进行阅读,所以在此处我在重新写一下安装的过程。并且说一下这两种安装方式的好处和缺点。

BasicSR是基于pytorch深度学习框架开发的。所以那些只看过tensorflow的同学们建议稍稍的看一下pytorch的API接口文档(PyTorch documentation — PyTorch 1.13 documentation),在来阅读他的文档可能要更方便。如果想要在GPU上运行的话,需要提前在电脑上配置相应的CUDA环境。但是由于本人的电脑没有GPU,所以用的是服务器已经配置好的环境。所以配置CUDA大家可以Google一下教程,此处并不麻烦。

本地clone代码安装(对于本地想测试多个模型且想研究并修改源码的同学建议安装)

1. 克隆项目:
        git clone https://github.com/XPixelGroup/BasicSR.git

2. 安装依赖包:

        此环境的依赖包的版本需求已经整理到了requirements.txt中。

cd BasicSR
pip install -r requirements.txt

3. 在 BasicSR 的根目录下安装 BasicSR:

python setup.py develop

如果希望安装的时候指定 CUDA 路径,可使用如下指令:(当然也可以在程序运行去手动指定所以这一步可选)

CUDA_HOME=/usr/local/cuda \
CUDNN_INCLUDE_DIR=/usr/local/cuda \
CUDNN_LIB_DIR=/usr/local/cuda \
python setup.py develop

pip方式安装

对于使用 pip 安装 BasicSR,在终端上运行以下指令即可:

pip install basicsr

如果希望安装的时候指定 CUDA 路径,可使用如下指令:

CUDA_HOME=/usr/local/cuda \
CUDNN_INCLUDE_DIR=/usr/local/cuda \
CUDNN_LIB_DIR=/usr/local/cuda \
pip install basicsr

验证 BasicSR 是否安装成功

basicsr,生成对抗网络,学习,人工智能

 如果此时没有报错,则说明 BasicSR 安装成功,此时便可以基于 BasicSR 进行开发啦 ∼∼∼

 2、目录基本解读

王鑫涛大佬的这一部分写的还是比较详细的。此处我会根据我的理解和这几天的使用情况,描述一下大家使用时候的注意事项。

红色 表示和跑实验直接相关的文件,即我们平时打交道最多的文件;

蓝色 表示其他与 BasicSR 强相关的代码文件;

黑色 表示配置文件。

basicsr,生成对抗网络,学习,人工智能

basicsr,生成对抗网络,学习,人工智能

在 BasicSR 仓库中,核心代码在 basicsr 这个文件夹中。这个部分主要为深度学习模型常用的 代码文件,比如网络结构,损失函数和数据加载等,具体目录如下。

其中,红色 表示我们在开发中主要修改的文件。

 basicsr,生成对抗网络,学习,人工智能

(此处应该注意一下,为什么呢? 上述的红色文件的确是咱们可以进行修改的地方,但是对于图像的尺寸,在他的代码里有着严格的要求。所以修改时一定要慎重!所以修改时一定要慎重!所以修改时一定要慎重!

由于在算法设计和开发中,还需要用到一些脚本,比如数据的预处理、指标计算等,相关的文 件位于scripts,目录如下

basicsr,生成对抗网络,学习,人工智能

 上述的scripts中基本就是对数据的一个准备,可以进行数据下载和很多的数据模型的下载。但是有个问题是里面的部分数据预训练模型可能在国内无法访问。需要翻墙,所以需要寻找其他的资源。

basicsr,生成对抗网络,学习,人工智能

但是吧,在这个脚本里可能有很多不能解决我们真实要处理的问题,所以在处理阶段的数据脚本我们可以自行在这里面编写。

3、数据预处理

本人此次使用的图片过小,所以此处直接使用他的ESRGAN的超分辨率模型出现了尺寸的问题。 所以在此处我只能对我现在的小尺寸的数据进行resize。

有同学可能说:Resize难道不会损失图片的精度吗?是的。我当时也有这个问题,然后我实验了一下。再此呢我们只简单的提一下我是怎么进行测试的,大家可以参考一下我的思路。我是将他的图片进行了一个放大,用的是

        1. Bicubic (双三次插值)对图像进行缩放(为啥要用双三次差值? 为了方便大家查阅 我直接把他的优缺点整理在下面了,包括他的双三次插值算法)

        2. 通过cv2中的resize() 对1中放大的图片进行缩放

        3. 通过对比PSNR和SSIM的值来判断效果如何

   

basicsr,生成对抗网络,学习,人工智能

 

# 双三次插值算法    img:图像,dstH:目标图像的高 dstW: 目的图像的宽
def BiCubic_interpolation(img, dstH, dstW):
    scrH, scrW, _= img.shape
    retimg = np.zeros((dstH, dstW, 3), dtype=np.uint8)
    for i in range(dstH):
        for j in range(dstW):
            scrx = i*(scrH/dstH)
            scry = j*(scrW/dstW)
            x = math.floor(scrx)    # floor向下取整
            y = math.floor(scry)
            u = scrx-x
            v = scry-y
            tmp = 0
            for ii in range(-1, 2):
                for jj in range(-1, 2):
                    if x+ii < 0 or y+jj < 0 or x+ii >= scrH or y+jj >= scrW:
                        continue
                    tmp += img[x+ii, y+jj] * BiBubic(ii-u) * BiBubic(jj-v)
            retimg[i, j] = np.clip(tmp, 0, 255)
    return retimg

在此处我们简单的提一下什么的效果最好,也说一下我是怎么做的这部分。由于王鑫涛大佬当时写这一部分的时候面向的对象就是对于人物或者是其他高清的图片所以说此处利用它例子给的图片或者是普通的图片都是可以的。因为他在自己的ESR的配置模型中给出的配置文件使用的128作为了图像裁剪的尺寸。为啥他要这么做呢?它提供的图片或者是咱们日常用于测试的图片一般分辨率会比较大,像此模型提供的数据集就是2048x1024的!发现问题了吗?是的,数据给的都是比较大的。所以这就引出了他为啥要进行裁剪。而我们在训练的时候往往并不要那么大 (常见的是 128×128 或者 192×192 的训练 patch). 因此我们 可以先把 2K 的图片裁剪成有 overlap 的 480×480 的子图像块. 然后再由 dataloader 从这 个 480×480 的子图像块中随机 crop 出 128×128(ESR) 或者 192×192 (EDSR)的训练 patch。

大家可能在上述的描述中理解力可能有和我一样的同学,在没有进行他的实验的时候是没有办法没有彻底清楚他的流程。那我在此处用白话的形式给大家形容一下它到底想表达什么。他的根本意思其实是想表达,当我们输入一个比较大的图像的时候为了不给显存带来过大的负载,那怎么办呢?我们就可以先把她这个图像给他切割成多个图像,就比如一个拼图的碎片,我们每次处理只是去处理一个碎片,那我们切割的时候是不是说图片可能长宽都不一样对吧?那我们怎么去处理这个问题呢,就是它上面说的overlap了。所以说即便重叠是没有关系的。所以说它通过整个图片去整除他的gt_size除不尽是没有关系的。然后咱们对他的sub图片采用的是同一个策略。

最后这一部分我说一下我现在碰到的问题也就是开头我们碰到的情况,顺便给大家避个雷。如果说我们输入的图片他并不是一个生活中常见的图片大小,而是在处理一个图片已经被分割的特别小的图片了,大小只有几KB,像素只有72x28、36x63、等等此类的特别小的。所以我们放到他这个模型里面没有办法直接使用她这个ESRGAN的网络模型,其实咱们从他的名字也看出来了,他给的例子是用的2K的数据集进行操作的。所以我们要怎么处理这个问题呢?我当时在做这一部分的时候,抱着移山大法的心态去做的!反正我的数据没有错我就不改,我就去改他的代码,然后我就去他的basicsr目录下去改他的model了,为了适配我的尺寸,前前后后改了特别多的东西。但是即便有部分改成功了但是最后还是有一些特别小的图片还是没有办法实现我的最小图片。所以我就想能不能把她的crop的function给删除掉!于是我又冲了,结果也很明显,失败了(虽然本人比较菜,但这一次其实他的框架的TODO中也说了他那一部分写的也不是很好,所以我当时也没有办法在短期内给他改出来更好的方法)。结果前前后后躺了比较多的坑本人精神状态已经不太好了。终于终于转机出现了———————— 最后我的导师给我出了几个点子,我豁然开朗。

微小图片的解决办法:其实一开始我便进入了一个误区就是我一直在想改变别人的东西来适配自己,但是换换思路,去改变我们的数据集其实更容易解决。所以我就将我们的图片数据进行了一个修改,修改到了正常图片的大小,也就是要大于他给的ESRGAN配置文件中的gt_size。(这个gt_size真的不要随便改,因为他的输入和卷积里面在py中写死了,并不是动态修改的,所以非常容易在其中某一步出现问题。)然后我们的图片到了正常的大小就可以进行接下来的操作了。是不是在这想问放大之后会不会对图片的精度产生影响?没问题,刚刚在上面已经解释过了。所以大家在经过自己的PSNR或者是SSIM的测试之后,可以放心的使用。从这一部分开始我们的数据准备阶段就算是正式完成了。

此处给出以下他官方的处理sub文件的脚本和对于小图片的处理:



import cv2
import numpy as np
import os
import sys
from multiprocessing import Pool
from os import path as osp
from tqdm import tqdm

from basicsr.utils import scandir


def main():
    """A multi-thread tool to crop large images to sub-images for faster IO.
    It is used for DIV2K dataset.
    Args:
        opt (dict): Configuration dict. It contains:
        n_thread (int): Thread number.
        compression_level (int):  CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and
            longer compression time. Use 0 for faster CPU decompression. Default: 3, same in cv2.
        input_folder (str): Path to the input folder.
        save_folder (str): Path to save folder.
        crop_size (int): Crop size.
        step (int): Step for overlapped sliding window.
        thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped.
    Usage:
        For each folder, run this script.
        Typically, there are four folders to be processed for DIV2K dataset.
            * DIV2K_train_HR
            * DIV2K_train_LR_bicubic/X2
            * DIV2K_train_LR_bicubic/X3
            * DIV2K_train_LR_bicubic/X4
        After process, each sub_folder should have the same number of subimages.
        Remember to modify opt configurations according to your settings.
    """

    opt = {}
    opt['n_thread'] = 10
    opt['compression_level'] = 3

    # HR images
    opt['input_folder'] = '../../datasets/example/BSDS100'    # 数据图片的源文件
    opt['save_folder'] = '../../datasets/example/BSDS100_sub'  # 数据图片的压缩之后的文件夹
    opt['crop_size'] = 120
    opt['step'] = 240
    opt['thresh_size'] = 1
    extract_subimages(opt)




def extract_subimages(opt):
    """Crop images to subimages.
    Args:
        opt (dict): Configuration dict. It contains:
        input_folder (str): Path to the input folder.
        save_folder (str): Path to save folder.
        n_thread (int): Thread number.
    """
    input_folder = opt['input_folder']
    save_folder = opt['save_folder']
    if not osp.exists(save_folder):
        os.makedirs(save_folder)
        print(f'mkdir {save_folder} ...')
    else:
        print(f'Folder {save_folder} already exists. Exit.')
        sys.exit(1)

    img_list = list(scandir(input_folder, full_path=True))

    pbar = tqdm(total=len(img_list), unit='image', desc='Extract')
    pool = Pool(opt['n_thread'])
    for path in img_list:
        pool.apply_async(worker, args=(path, opt), callback=lambda arg: pbar.update(1))
    pool.close()
    pool.join()
    pbar.close()
    print('All processes done.')


def worker(path, opt):
    """Worker for each process.
    Args:
        path (str): Image path.
        opt (dict): Configuration dict. It contains:
        crop_size (int): Crop size.
        step (int): Step for overlapped sliding window.
        thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped.
        save_folder (str): Path to save folder.
        compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION.
    Returns:
        process_info (str): Process information displayed in progress bar.
    """
    crop_size = opt['crop_size']
    step = opt['step']
    thresh_size = opt['thresh_size']
    img_name, extension = osp.splitext(osp.basename(path))

    # remove the x2, x3, x4 and x8 in the filename for DIV2K
    img_name = img_name.replace('x2', '').replace('x3', '').replace('x4', '').replace('x8', '')

    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)

    h, w = img.shape[0:2]
    h_space = np.arange(0, h - crop_size + 1, step)
    if h - (h_space[-1] + crop_size) > thresh_size:
        h_space = np.append(h_space, h - crop_size)
    w_space = np.arange(0, w - crop_size + 1, step)
    if w - (w_space[-1] + crop_size) > thresh_size:
        w_space = np.append(w_space, w - crop_size)

    index = 0
    for x in h_space:
        for y in w_space:
            index += 1
            cropped_img = img[x:x + crop_size, y:y + crop_size, ...]
            cropped_img = np.ascontiguousarray(cropped_img)
            cv2.imwrite(
                osp.join(opt['save_folder'], f'{img_name}_s{index:03d}{extension}'), cropped_img,
                [cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']])
    process_info = f'Processing {img_name} ...'
    return process_info


if __name__ == '__main__':
    main()

然后给出对于小文件处理的sub脚本:

import os
from os import path as osp
import cv2


def scandir(dir_path, suffix=None, recursive=False, full_path=False):
    """Scan a directory to find the interested files.

    Args:
        dir_path (str): Path of the directory.
        suffix (str | tuple(str), optional): File suffix that we are
            interested in. Default: None.
        recursive (bool, optional): If set to True, recursively scan the
            directory. Default: False.
        full_path (bool, optional): If set to True, include the dir_path.
            Default: False.

    Returns:
        A generator for all the interested files with relative paths.
    """

    if (suffix is not None) and not isinstance(suffix, (str, tuple)):
        raise TypeError('"suffix" must be a string or tuple of strings')

    root = dir_path

    def _scandir(dir_path, suffix, recursive):
        for entry in os.scandir(dir_path):
            if not entry.name.startswith('.') and entry.is_file():
                if full_path:
                    return_path = entry.path
                else:
                    return_path = osp.relpath(entry.path, root)

                if suffix is None:
                    yield return_path
                elif return_path.endswith(suffix):
                    yield return_path
            else:
                if recursive:
                    yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
                else:
                    continue

    return _scandir(dir_path, suffix=suffix, recursive=recursive )
pnglist = list(scandir("../../datasets/example/bai_hr", full_path=True))
print(pnglist)

#读取原始图像
for i in pnglist:

    img = cv2.imread(i,1)
    x, y, p = img.shape[0:3]

    #图像向下取样
    r = cv2.pyrDown(img)
    r = cv2.pyrDown(r)
    r = cv2.resize(r, [int(y/4),int(x/4)])    # 为啥是4倍呢 因为ESRGAN的配置文件有一个scale的四倍放大 当然这个地方个人可以根据实际的需求处理 此处的参数并不会影响程序运行

    cv2.imwrite("../../datasets/example/bai_hr_sub/" + str(i).split("/")[-1], r)

 4、运行整个训练模型

        其实对于我们单纯的训练或者是做模型对比的来说到此处基本已经可以了,如果你不是想去修改他的模型或者是觉得他写的不够完美想继续完善他的框架。其实是咱们的准备工作都已经完成了。接下来我们可以直接跑咱们的训练模型了。

我们需要到我们的文件夹下来进行跑咱们的训练脚本:


cd BasicSR-master

# 已经在第一步设置了cuda的或者对于自己的gpu可以自由支配的可以使用此运行命令
python3 basicsr/train.py -opt options/train/ESRGAN/train_ESRGAN_x4.yml

# 指定我们的gpu来跑训练模型
CUDA_VISIBLE_DEVICES=2 python3 basicsr/train.py -opt options/train/ESRGAN/train_ESRGAN_x4.yml

# 如果不知道自己的gpu信息可以安装一下gpustat 然后在自己的gpu中直接输入就可以看到了
pip install gpustat

basicsr,生成对抗网络,学习,人工智能

 

最终出现以下图片就算是训练完成了

basicsr,生成对抗网络,学习,人工智能

 最后会在我们的experiments下面生成我们的训练结果

basicsr,生成对抗网络,学习,人工智能

 

basicsr,生成对抗网络,学习,人工智能

最后我们根据我们的峰值信噪比判别一下效果如何,我们的峰值信噪比可以在log中看到效果。 但是呢,他的PSNR可能并不是最符合咱们的评判标准。还是需要考虑其他的Loss判别。

完成!文章来源地址https://www.toymoban.com/news/detail-822585.html

到了这里,关于BasicSR的使用过程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 人工智能基础部分20-生成对抗网络(GAN)的实现应用

    人工智能基础部分20-生成对抗网络(GAN)的实现应用

    大家好,我是微学AI,今天给大家介绍一下人工智能基础部分20-生成对抗网络(GAN)的原理与简单应用。生成对抗网络是一种由深度学习模型构成的神经网络系统,由一个生成器和一个判别器相互博弈来提升模型的能力。本文将从以下几个方面进行阐述:生成对抗网络的概念、

    2024年02月09日
    浏览(46)
  • 人工智能|深度学习——基于对抗网络的室内定位系统

    人工智能|深度学习——基于对抗网络的室内定位系统

    基于CSI的工业互联网深度学习定位.zip资源-CSDN文库 室内定位技术是工业互联网相关技术的关键一环。 该技术旨在解决于室外定位且取得良好效果的GPS由于建筑物阻挡无法应用于室内的问题 。实现室内定位技术,能够在真实工业场景下实时追踪和调配人员并做到对自动化生产

    2024年02月20日
    浏览(17)
  • 人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用

    人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用,本文将具体介绍DCGAN模型的原理,并使用PyTorch搭建一个简单的DCGAN模型。我们将提供模型代码,并使用一些数据样例进行训练和测试。最后,我们将

    2024年02月08日
    浏览(52)
  • 生成对抗网络DCGAN学习实践

    生成对抗网络DCGAN学习实践

    在AI内容生成领域,有四种常见的AI模型技术:GAN、VAE、Flow、Diffusion。其中,Diffusion属于较新的技术,资料较少。VAE通常更多用于压缩任务,Flow相对冷门。而GAN由于其问世较早,相关的开源项目和科普文章也更加全面,适合入门学习。 博主从入门和学习角度用Tensorflow跑通了

    2024年02月14日
    浏览(12)
  • 深度学习生成对抗网络(GAN)

    深度学习生成对抗网络(GAN)

    生成对抗网络(Generative Adversarial Networks)是一种无监督深度学习模型,用来通过计算机生成数据,由Ian J. Goodfellow等人于2014年提出。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。生成对抗网络被认为是当

    2024年02月07日
    浏览(12)
  • 深度学习基础——GAN生成对抗网络

    深度学习基础——GAN生成对抗网络

            生成对抗网络GAN(Generative adversarial networks)是Goodfellow等在2014年提出的一种生成式模型。GAN在结构上受博弈论中的二元零和博弈(即二元的利益之和为零,一方的所得正是另一方的所失)的启发,系统由一个生成器和一个判别器构成。         生成器和判别器均可以

    2024年02月22日
    浏览(11)
  • 【深度学习】生成对抗网络理解和实现

            本篇说明GAN框架是个啥。并且以最基础的数据集为例,用代码说明Gan网络的原理;总的老说,所谓神经网络,宏观上看,就是万能函数,在这种函数下,任何可用数学表述的属性,都可以映射成另一种可表示属性。         生成对抗网络 (GAN) 是一种算法架

    2024年02月13日
    浏览(12)
  • 深度学习8:详解生成对抗网络原理

    深度学习8:详解生成对抗网络原理

    目录 大纲 生成随机变量 可以伪随机生成均匀随机变量 随机变量表示为操作或过程的结果 逆变换方法 生成模型 我们试图生成非常复杂的随机变量…… …所以让我们使用神经网络的变换方法作为函数! 生成匹配网络 培养生成模型 比较基于样本的两个概率分布 反向传播分布

    2024年02月11日
    浏览(15)
  • 【计算机视觉|生成对抗】用深度卷积生成对抗网络进行无监督表示学习(DCGAN)

    【计算机视觉|生成对抗】用深度卷积生成对抗网络进行无监督表示学习(DCGAN)

    本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 标题: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 链接:[1511.06434] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (arxiv.org) 近年来,卷积网络(CNNs)的监督学习

    2024年02月13日
    浏览(18)
  • 深度学习9:简单理解生成对抗网络原理

    深度学习9:简单理解生成对抗网络原理

    目录 生成算法 生成对抗网络(GAN) “生成”部分 “对抗性”部分 GAN如何运作? 培训GAN的技巧? GAN代码示例 如何改善GAN? 结论 您可以将生成算法分组到三个桶中的一个: 鉴于标签,他们预测相关的功能(朴素贝叶斯) 给定隐藏的表示,他们预测相关的特征(变分自动编

    2024年02月10日
    浏览(11)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包