【高级数据结构】Trie树

这篇具有很好参考价值的文章主要介绍了【高级数据结构】Trie树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原理

介绍

高效地存储和查询字符串的数据结构。所以其重点在于:存储、查询两个操作。

存储操作

示例和图片来自:https://blog.csdn.net/qq_42024195/article/details/88364485

假设有这么几个字符串:b,abc,abd,bcd,abcd,efg,hii。最终存储出来的Trie图如下图所示:

【高级数据结构】Trie树,树,高级数据结构,数据结构
具体是怎么存的呢?对于每一个字符串,从树的根节点开始,依次判断当前节点的儿子节点中是否有当前字符:

  • 如果有,则进行下一个字符的判断,同时根节点更新为该儿子节点
  • 如果没有,创建一个儿子节点为当前字符,然后根节点更新为该儿子节点

如果已经到了最后一个字符,就在对应的儿子节点进行一个标记,表示从根节点到该节点的字符组成的字符串是一个单词。(对应图中的红色部分)

查询

查询和存储的操作类似。对于一个给定的字符串,从树的根节点开始,依次判断当前节点的儿子节点中是否有当前字符:

  • 如果有,则进行下一个字符的判断,同时根节点更新为该儿子节点
  • 如果没有,则说明不存在该字符串,直接返回不存在

复杂度

时间复杂度:O(max_len(s))=O(h),h为Trie树的高度,即最长字符串的长度。

空间复杂度:不超过O(N * max_len(s))。

代码实现

208. 实现 Trie (前缀树)

class Trie {

    private Trie[] children; // 当前节点的所有儿子
    private boolean isEnd; // 当前节点是否为一个单词的结尾

    public Trie() {
        children = new Trie[26]; // 假设字符串中都是小写字母,那么一个节点的所有儿子最多只有26个
        isEnd = false;
    }
    
    /**
		存储操作:插入一个字符串
	*/
    public void insert(String word) {
       Trie node = this; // 从根节点开始
        for(char c : word.toCharArray()) {
            int u = c - 'a'; // [a, z] -> [0, 25]
            if (node.children[u] == null) { // 当前节点node不存在儿子节点 
                node.children[u] = new Trie(); // 创建一个节点为当前字符
            } 
            node = node.children[u]; // 更新根节点为儿子节点
        }
        node.isEnd = true;
    }
    
	/**
		查询操作:查询某个字符串是否在树中。如果在树中,可以是树中单词的前缀,也可以是完整的单词
	*/
    private Trie searchPrefix(String prefix) {
        Trie node = this; // 从根节点开始
        for(char c : prefix.toCharArray()) {
            int u = c - 'a'; // [a, z] -> [0, 25]
            if (node.children[u] == null) { // 当前节点node不存在儿子节点 
                return null;
            } 
            node = node.children[u]; // 走到儿子节点
        }
        return node;
    }
    
    public boolean search(String word) {
    	// 查询树中是否存在完整的单词
        Trie node = searchPrefix(word);
        return node != null && node.isEnd;
    }
    
    public boolean startsWith(String prefix) {
    	// 查询树中是否存在某个前缀
        return searchPrefix(prefix) != null;
    }
}

/**
 * Your Trie object will be instantiated and called as such:
 * Trie obj = new Trie();
 * obj.insert(word);
 * boolean param_2 = obj.search(word);
 * boolean param_3 = obj.startsWith(prefix);
 */

当然,Trie树也可以查询存储并查询一个单词出现了几次,只需要把isEnd改成cnt就行。当cnt为0时,表示没出现过,即不是一个完整的单词;当cnt > 0时,表示出现过,cnt的大小即为出现的次数。文章来源地址https://www.toymoban.com/news/detail-837981.html

到了这里,关于【高级数据结构】Trie树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • LeetCode、208. 实现 Trie (前缀树)【中等,自定义数据结构】

    LeetCode、208. 实现 Trie (前缀树)【中等,自定义数据结构】

    博主介绍:✌目前全网粉丝2W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。 涵盖技术内容:Java后端、算法、分布式微服务、中间件、前端、运维、ROS等。 博主所有博客文件目录索引:博客目录索引(持续更新) 视频平台:

    2024年02月19日
    浏览(12)
  • 【字典树/trie树】实现高效插入和查询字符串的数据结构

    【字典树/trie树】实现高效插入和查询字符串的数据结构

    本文是https://www.acwing.com/problem/content/description/837/的总结,有兴趣可以做做 字典树的实现依赖于树结构,有两种操作,1是插入字符串,2是查找字符串。使用idx维护最新的结点下标。如下图,假设我们维护一个   可以看到,我们维护了一个树形结构储存了左边的字符串,但是

    2024年02月03日
    浏览(15)
  • 初识Go语言25-数据结构与算法【堆、Trie树、用go中的list与map实现LRU算法、用go语言中的map和堆实现超时缓存】

    初识Go语言25-数据结构与算法【堆、Trie树、用go中的list与map实现LRU算法、用go语言中的map和堆实现超时缓存】

      堆是一棵二叉树。大根堆即任意节点的值都大于等于其子节点。反之为小根堆。   用数组来表示堆,下标为 i 的结点的父结点下标为(i-1)/2,其左右子结点分别为 (2i + 1)、(2i + 2)。 构建堆   每当有元素调整下来时,要对以它为父节点的三角形区域进行调整。 插入元素

    2024年02月12日
    浏览(49)
  • 【高级数据结构】线段树

    目录 树状数组1(单点修改,区间查询) 树状数组2(区间修改,单点查询) 线段树1(区间修改,区间查询) 代码源线段树1(查询最小值出现次数)  代码源线段树2(最大字段和) 树状数组1(单点修改,区间查询) 题目链接:  https://www.luogu.com.cn/problem/P3374 代码: 树状

    2024年02月15日
    浏览(34)
  • 【高级数据结构】树状数组

    目录 树状数组1 (单点修改,区间查询) 树状数组2(区间修改,单点查询) 树状数组1 (单点修改,区间查询) 题目链接:洛谷 树状数组1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 将某一个数加上 x 求出某区间每一个数的和 输入格式 第一行包含两个正

    2024年02月15日
    浏览(20)
  • 数据结构高级算法

    数据结构高级算法

      目录 最小生成树 Kruskal(克鲁斯卡尔)(以边为核心) 9) 不相交集合(并查集合) 基础 Union By Size 图-相关题目 4.2 Greedy Algorithm 1) 贪心例子 Dijkstra Prim Kruskal 最优解(零钱兑换)- 穷举法 Leetcode 322 最优解(零钱兑换)- 贪心法 Leetcode 322 3) Huffman 编码问题 问题引入 Huffman 树 Huffm

    2024年02月21日
    浏览(17)
  • 【算法 & 高级数据结构】树状数组:一种高效的数据结构(二)

    【算法 & 高级数据结构】树状数组:一种高效的数据结构(二)

    🚀 个人主页 :为梦而生~ 关注我一起学习吧! 💡 专栏 :算法题、 基础算法、数据结构~赶紧来学算法吧 💡 往期推荐 : 【算法基础 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理) 【算法基础】深搜 数据结构各内部排序算法总结对比及动图演示(插入排序

    2024年03月26日
    浏览(12)
  • 【算法 & 高级数据结构】树状数组:一种高效的数据结构(一)

    【算法 & 高级数据结构】树状数组:一种高效的数据结构(一)

    🚀 个人主页 :为梦而生~ 关注我一起学习吧! 💡 专栏 :算法题、 基础算法~赶紧来学算法吧 💡 往期推荐 : 【算法基础 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理) 【算法基础】深搜 树状数组 (Binary Indexed Tree,BIT)是一种数据结构,用于高效地处理

    2024年03月11日
    浏览(19)
  • 高级数据结构——二叉搜索树

    高级数据结构——二叉搜索树

    目录 1. 二叉搜索树的概念 2. 二叉搜索树的实现 结点类 二叉搜索树的类 2.1 默认成员函数 2.1.1 构造函数 2.1.2 拷贝构造函数 2.1.3 赋值运算符重载函数 2.1.4 析构函数 2.2 中序遍历 2.3 insert插入函数 2.3.1 非递归实现 2.3.2 递归实现 2.4 erase删除函数 2.4.1 非递归实现 2.4.2 递归版本

    2024年02月10日
    浏览(10)
  • C++ 高级数据结构————[ 单调栈 ]

    C++ 高级数据结构————[ 单调栈 ]

    每周一篇的算法文章来了 今天讲解的是高级数据结构中的——单调栈 单调栈,顾名思义,就是升级版的栈() 先回顾一下栈把 栈 ,是一种线性表,它的特点是只能从一边进出,并且先进后出,后进先出。就想枪的弹夹一样。 而单调栈,跟他有一点不同 单调栈 ,每时每刻

    2023年04月20日
    浏览(9)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包