【数据结构】非线性结构——二叉树

这篇具有很好参考价值的文章主要介绍了【数据结构】非线性结构——二叉树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端
🧧🧧🧧🧧🧧个人主页🎈🎈🎈🎈🎈
🧧🧧🧧🧧🧧数据结构专栏🎈🎈🎈🎈🎈
🧧🧧🧧🧧🧧【数据结构】受限制的线性表——队列🎈🎈🎈🎈🎈

前言

前面我们都是学的线性结构的数据结构,接下来我们就需要来学习非线性的数据结构,我们先来学第一个非线性的数据结构——树。每一门学科都来自生活,从生活中学习,我们要学的树就是来自生活,这种数据结构就像我们大自然中的树倒立着一样,所以我们取名为树。

1.树型结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
1.有一个特殊的结点,称为根结点,根结点没有前驱结点
2.除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、…、Tm,其中每一个集合Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
3.树是递归定义的。

【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端
注意:树形结构中,子树不能有交集,否则不具备树形结构。

1.2树的特性

1.子树是不相交的
2.除了根结点以外,每一个结点只有一个父节点。
3.一棵N个结点的树有N-1条边。

1.3树的一些性质

**结点的度:**一个结点含有子树的个数称为该结点的度;
**树的度:**一棵树中,所有结点度的最大值称为树的度;
叶子结点或终端结点:度为0的结点称为叶结点;
**双亲结点或父结点:**若一个结点含有子结点,则这个结点称为其子结点的父结点;
**孩子结点或子结点:**一个结点含有的子树的根结点称为该结点的子结点;
**根结点:**一棵树中,没有双亲结点的结点;
**结点的层次:**从根开始定义起,根为第1层,根的子结点为第2层,以此类推
**树的高度或深度:**树中结点的最大层次;
**非终端结点或分支结点:**度不为0的结点;
**兄弟结点:**具有相同父结点的结点互称为兄弟结点;
**堂兄弟结点:**双亲在同一层的结点互为堂兄弟;
**结点的祖先:**从根到该结点所经分支上的所有结点;
**子孙:**以某结点为根的子树中任一结点都称为该结点的子孙。
**森林:**由m(m>=0)棵互不相交的树组成的集合称为森林

1.4树的一些表示形式

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

class Node {
 int value;              
Node firstChild;        
// 树中存储的数据
// 第一个孩子引用
Node nextBrother;     // 下一个兄弟引用   
}

【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端

1.5树的应用

文件系统管理(目录和文件)
【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端

2.二叉树

2.1 概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
    【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端
    【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端
    从上图可以看出:
  3. 二叉树不存在度大于2的结点
  4. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
    注意:对于任意的二叉树都是由以下几种情况复合而成的:
    【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端

2.2 两种特殊的二叉树

  1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是,则它就是满二叉树。
  2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
    【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端

2.3 二叉树的性质

  1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有(i>0)个结点
  2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是(k>=0)
  3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
  4. 具有n个结点的完全二叉树的深度k为上取整
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i
    的结点有:
    若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
    若2i+1<n,左孩子序号:2i+1,否则无左孩子
    若2i+2<n,右孩子序号:2i+2,否则无右孩子

2.4 二叉树的存储

二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

 // 孩子表示法
class Node {
    int val;        // 数据域
    Node left;      // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right;     // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
 
// 孩子双亲表示法
class Node {
    int val;        // 数据域
    Node left;      // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right;     // 右孩子的引用,常常代表右孩子为根的整棵右子树
    Node parent;    // 当前节点的根节点
}

这里我们用孩子表示法来构建二叉树。

2.5 二叉树的基本操作

2.5.1枚举法来将树创建,这种创建方式一开始是比较容易理解的,等到我们对二叉树学习到一定的程度再去用其他方法创建二叉树,那样就比较轻松。
枚举法创建树:

public class BinaryTree {
    static class TreeNode {
        public char val;
        public TreeNode left;
        public TreeNode right;
        public TreeNode(char val) {
            this.val = val;
        }
    }
    public TreeNode careTree1() {
        TreeNode A = new TreeNode('A');
        TreeNode B = new TreeNode('B');
        TreeNode C = new TreeNode('C');
        TreeNode D = new TreeNode('D');
        TreeNode E = new TreeNode('E');
        TreeNode F = new TreeNode('F');

        A.left = B;
        A.right = D;

        B.left = C;

        D.left = E;
        D.right = F;

        return A;
    }
}

2.5.2 二叉树的遍历

  1. 前中后序遍历
    学习二叉树结构,最简单的方式就是遍历。所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
    在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
    NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点—>根的左子树—>根的右子树。
    LNR:中序遍历(Inorder Traversal)——根的左子树—>根节点—>根的右子树。
    LRN:后序遍历(Postorder Traversal)——根的左子树—>根的右子树—>根节点。

下面分析前序递归遍历图解与遍历结果
【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端
代码实现:

public void preOrder(TreeNode root) {
        if(root == null) {
            return;
        }
        System.out.print(root.val+" ");
        preOrder(root.left);
        preOrder(root.right);
    }

下面分析中序递归遍历图解与遍历结果
【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端
代码实现:

 public void inOrder(TreeNode root) {
        if(root == null) {
            return;
        }
        inOrder(root.left);
        System.out.print(root.val+" ");
        inOrder(root.right);
    }

下面分析后序递归遍历图解与遍历结果
【数据结构】非线性结构——二叉树,数据结构,数据结构,java,链表,r-tree,后端
代码实现:

 public void postOrder(TreeNode root) {
        if(root == null) {
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.val+" ");
    }
  1. 层序遍历
    层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
    2.5.3 二叉树的基本操作
    这些操作我们都采用子问题方式来解决
    什么叫子问题?子问题就是将问题细分成一个一个相同的小问题来解决。
    1.获取树中节点的个数
    左树的结点+右树的结点+根结点
int size(TreeNode root) {
        //子问题:左树结点的个数+右树结点的个数+根的个树
        if(root == null) {
            return 0;
        }
        return size(root.left) + size(root.right) + 1;
    }

2.获取叶子节点的个数
左树的叶子节点+右树的叶子节点 (叶子节点就是左右都没有结点称为叶子节点)

int getLeafNodeCount(TreeNode root) {
        if(root == null) {
            return 0;
        }
       //判断是否为叶子结点
        if(root.left == null && root.right == null) {
            return 1;
        }
        return getLeafNodeCount(root.left) + getLeafNodeCount(root.right);
    }

3.获取第K层节点的个数
每一次遍历左子树或右子树的时候k-1,当k==1时直接返回1.

 int getKLevelNodeCount(TreeNode root,int k) {
        if(root == null) {
            return 0;
        }
        //k==1时返回1
        if(k == 1) {
            return 1;
        }
        //遍历左子树和右子树
        return getKLevelNodeCount(root.left,k-1) + getKLevelNodeCount(root.right,k-1);
    }

4.获取二叉树的高度
比较左子树和右子树的最大路径然后+1

int getHeight(TreeNode root) {
        if(root == null) {
            return 0;
        }
        //比较左子树与右子树的最大值然后加1
        int getLeftMax = getHeight(root.left);
        int getRightMax = getHeight(root.right);

        return Math.max(getLeftMax,getRightMax) + 1;
    }

    int getHeight1(TreeNode root) {
        if(root == null) {
            return 0;
        }
        //比较左子树与右子树的最大值然后加1
        return Math.max(getHeight1(root.left),getHeight1(root.right)) + 1;
    }

5.检测值为value的元素是否存在
先判断根结点,然后遍历左子树和右子树

TreeNode find(TreeNode root, int val) {
        if(root == null) {
            return null;
        }
        //判断根结点是否为检测值
        if(root.val == val) {
            return root;
        }
        //然后遍历左子树,判断有没有和val值相同的,有则返回,没有则遍历右子树
        TreeNode leftVal = find(root.left,val);
        if(leftVal != null) {
            return leftVal;
        }
        //然后遍历右子树,判断有没有和val值相同的,有则返回
        TreeNode rightVal = find(root.right,val);
        if(rightVal != null) {
            return rightVal;
        }
        //说明左子树找不到右子树也找不到,最后返回null
        return null;
    }

希望大家可以给我点点关注,点点赞,并且在评论区发表你们的想法和意见,我会认真看每一条评论,你们的支持就是我的最大鼓励。🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹文章来源地址https://www.toymoban.com/news/detail-844042.html

到了这里,关于【数据结构】非线性结构——二叉树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

原文地址:https://blog.csdn.net/HD_13/article/details/137028686

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包