矩阵特征值分解

  • 【证明】对称矩阵的特征值为实数

    性质 1 对称矩阵的特征值为实数。 证明 设复数矩阵 X = ( x i j ) boldsymbol{X} = (x_{ij}) X = ( x ij ​ ) , x ‾ i j overline{x}_{ij} x ij ​ 为 x i j x_{ij} x ij ​ 的共轭复数,记 X ‾ = ( x ‾ i j ) overline{boldsymbol{X}} = (overline{x}_{ij}) X = ( x ij ​ ) ,即 X ‾ overline{boldsymbol{X}} X 是由 X boldsym

    2024年02月04日
    阅读 30
  • Python中的矩阵对角化与特征值、特征向量

    Python中的矩阵对角化与特征值、特征向量 在数学和物理学中,矩阵对角化是一种重要的矩阵变换方法。Python提供了许多工具和库来实现矩阵对角化操作,并能够计算矩阵的特征值和特征向量。本文将针对Python中的矩阵对角化、特征值和特征向量的相关概念进行详细的介绍。

    2024年02月11日
    阅读 15
  • 线性代数|证明:矩阵不同特征值对应的特征向量线性无关

    定理 1 设 λ 1 , λ 2 , ⋯   , λ m lambda_1,lambda_2,cdots,lambda_m λ 1 ​ , λ 2 ​ , ⋯ , λ m ​ 是方阵 A boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯   , p m boldsymbol{p}_1,boldsymbol{p}_2,cdots,boldsymbol{p}_m p 1 ​ , p 2 ​ , ⋯ , p m ​ 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ

    2024年02月07日
    阅读 16
  • 利用矩阵特征值解决微分方程【1】

    目录 一. 特征值介绍 二. 单变量常微分方程 三. 利用矩阵解决微分方程问题 四. 小结 4.1 矩阵论 4.2 特征值与特征向量内涵 4.3 应用 线性代数有两大基础问题: 如果A为对角阵的话,那么问题就很好解决。需要注意的是,矩阵的基础行变换会改变特征值的大小。 在已知解的情况

    2024年01月31日
    阅读 15
  • 实对称矩阵的奇异值等于特征值

    首先,来看一下什么叫作矩阵的奇异值,根据课本上的定义 1 定理1: 实对称矩阵的奇异值等于其特征值. 证明: 对于实对称矩阵 A A A , 其特征值为 λ 1 , λ 2 , . . . , λ n lambda_1,lambda_2,...,lambda_n λ 1 ​ , λ 2 ​ , . . . , λ n ​ . 由某个定理可知(自己查找一下), A 2 A^2 A 2 的特

    2024年02月06日
    阅读 16
  • 【线性代数】矩阵特征值的快速求法

    本文讨论 3阶矩阵 的特征值的快速求法。 分为速写特征多项式和速解方程两部分。 速写特征多项式 不妨令: A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] boldsymbol{A}=left[begin{array}{lll} a_{11} a_{12} a_{13} \\\\ a_{21} a_{22} a_{23} \\\\ a_{31} a_{32} a_{33} end{array}right] A = ​ a 11 ​ a 21 ​ a 31 ​

    2024年02月03日
    阅读 11
  • 雅可比旋转(Jacobi法)求对称矩阵的特征值和特征向量

    该方法是求解 对称矩阵 全部特征值和特征向量的一种方法,它基于以下结论: ① 任何实对称矩阵A可以通过正交相似变换成对角型 ,即存在正交矩阵Q,使得 Q T A Q = d i a g ( λ 1 , λ 2 , … , λ n ) Q^TAQ=diag(λ1,λ2,…,λn) Q T A Q = d ia g ( λ 1 , λ 2 , … , λn ) 其中λi(i=1,2,…,n)是A的特征

    2024年01月30日
    阅读 18
  • MATLAB 构建协方差矩阵,解算特征值和特征向量(63)

    对于某片有待分析的点云,我们希望构建协方差矩阵,计算特征值和特征向量,这是很多算法必要的分析方法,这里提供完整的计算代码(验证正确) !!! 特别需要注意的是:特征值的排序方式 这里计算的特征值按照从小到大的顺序重新排列得到:L1 L2 L3,这样每个特征值都

    2024年04月14日
    阅读 18
  • 矩阵AB和BA的特征值相同

    手写的,如下图: 即可证明,矩阵AB的特征值和BA的特征值相同。 关于矩阵转置和逆矩阵混合运算,有如下规律:

    2024年02月16日
    阅读 7
  • 特征值与特征向量:矩阵的对称性与非对称性

    在现实生活中,我们经常会遇到各种各样的问题,这些问题通常可以用数学模型来描述。在数学中,矩阵是一个非常重要的概念,它可以用来描述各种各样的问题。在本文中,我们将讨论矩阵的对称性与非对称性,以及如何通过计算特征值和特征向量来解决这些问题。 矩阵是

    2024年02月19日
    阅读 13
  • 证明矩阵特征值之积等于矩阵行列式的值

    设n阶矩阵 A A A 的特征值为 λ 1 , λ 2 , . . , λ n lambda_1, lambda_2,..,lambda_n λ 1 ​ , λ 2 ​ , .. , λ n ​ ,则 λ 1 λ 2 ⋯ λ n = ∣ A ∣ 。 lambda_1lambda_2cdotslambda_n = |A|。 λ 1 ​ λ 2 ​ ⋯ λ n ​ = ∣ A ∣ 。 证明: 矩阵 A A A 的特征多项式为: f ( λ ) = ∣ λ E − A ∣ = ∣ λ − a 11 −

    2024年02月16日
    阅读 12
  • 矩阵的范数和特征值之间的关系

       参考: linear algebra - Why is the norm of a matrix larger than its eigenvalue? - Mathematics Stack Exchange

    2024年02月08日
    阅读 17
  • 【证明】矩阵特征值之和等于主对角线元素之和

    性质 1 设 n n n 阶矩阵 A = ( a i j ) boldsymbol{A} = (a_{ij}) A = ( a ij ​ ) 的特征值为 λ 1 , λ 2 , ⋯   , λ n lambda_1,lambda_2,cdots,lambda_n λ 1 ​ , λ 2 ​ , ⋯ , λ n ​ ,则 λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n lambda_1 + lambda_2 + cdots + lambda_n = a_{11} + a_{22} + cdots + a_{nn} λ 1 ​ + λ 2 ​

    2024年02月04日
    阅读 17
  • 向量与矩阵 导数和偏导数 特征值与特征向量 概率分布 期望方差 相关系数

    标量(scalar) :一个单独的数。 向量(vector) :⼀组有序排列的数。通过次序中的索引,我们可以确定每个单独的数。 矩阵(matrix) :具有相同特征和纬度的对象的集合。⼀个对象表⽰为矩阵中的⼀⾏,⼀个特征表⽰为矩阵中的⼀列,表现为⼀张⼆维数据表。 张量(ten

    2024年02月03日
    阅读 14
  • 线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念

    目录 1 什么是特征值和特征向量? 1.1 特征值和特征向量这2个概念先放后 1.2 直观定义 1.3 严格定义 2 如何求特征值和特征向量 2.1 方法1:结合图形看,直观方法求 2.1.1 单位矩阵的特征值和特征向量 2.1.2 旋转矩阵 2.2  根据严格定义的公式 A*X=λ*X 来求 2.3  特征方程 2.4 互异特

    2024年02月09日
    阅读 17
  • 谈主成分分析/因子分析中的特征值“矩阵近似”

    主成分分析和因子分析是数据降维的常用手段,其中以特征值为载体,在不断降维“近似”原本的协方差矩阵。 CSDN中一些文章在介绍这个问题或者叫“特征值分解”时,讲得都比较学术化,今天用一个小例子,还是面向新人,来引导理解“特征值分解”和“矩阵近似”(图

    2024年02月05日
    阅读 20
  • 线性代数|证明:矩阵特征值之积等于矩阵行列式的值

    性质 1 设 n n n 阶矩阵 A = ( a i j ) boldsymbol{A} = (a_{ij}) A = ( a ij ​ ) 的特征值为 λ 1 , λ 2 , ⋯   , λ n lambda_1,lambda_2,cdots,lambda_n λ 1 ​ , λ 2 ​ , ⋯ , λ n ​ ,则 λ 1 λ 2 ⋯ λ n = ∣ A ∣ lambda_1 lambda_2 cdots lambda_n = |boldsymbol{A}| λ 1 ​ λ 2 ​ ⋯ λ n ​ = ∣ A ∣ 。 证明 不妨设

    2024年02月08日
    阅读 14
  • 【数值分析】用幂法计算矩阵的主特征值和对应的特征向量(附matlab代码)

    用幂法计算下列矩阵的按模最大特征值及对应的特征向量 k= 1 V^T= 8 6 0 m= 8 u^T= 1.0000 0.7500 0 k= 2 V^T= 9.2500 6.0000 -2.7500 m= 9.2500 u^T= 1.0000 0.6486 -0.2973 k= 3 V^T= 9.5405 5.8919 -3.5405 m= 9.5405 u^T= 1.0000 0.6176 -0.3711 k= 4 V^T= 9.5949 5.8414 -3.7309 m= 9.5949 u^T= 1.0000 0.6088 -0.3888 k= 5 V^T= 9.6041 5.8240 -3.7753 m=

    2024年02月01日
    阅读 14
  • 线性代数|证明:矩阵特征值之和等于主对角线元素之和

    性质 1 设 n n n 阶矩阵 A = ( a i j ) boldsymbol{A} = (a_{ij}) A = ( a ij ​ ) 的特征值为 λ 1 , λ 2 , ⋯   , λ n lambda_1,lambda_2,cdots,lambda_n λ 1 ​ , λ 2 ​ , ⋯ , λ n ​ ,则 λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n lambda_1 + lambda_2 + cdots + lambda_n = a_{11} + a_{22} + cdots + a_{nn} λ 1 ​ + λ 2 ​

    2024年02月08日
    阅读 14
  • 矩阵理论| 基础:特征值与特征向量、代数重数/几何重数、相似对角化和Jordan标准型

    矩阵 A mathbf A A 的特征值与特征向量满足 A x = λ x mathbf Amathbf x=lambdamathbf x Ax = λ x ,即 ( A − λ I ) x = 0 (mathbf A-lambdamathbf I)mathbf x=0 ( A − λ I ) x = 0 ,且 x ≠ 0 mathbf xneq0 x  = 0 特征值 : d e t ( A − λ I ) = 0 det(mathbf A-lambdamathbf I)=0 d e t ( A − λ I ) = 0 的根,其中 p ( λ

    2024年02月05日
    阅读 21