数字电路硬件设计系列(六)之FPGA配置引脚的设计

这篇具有很好参考价值的文章主要介绍了数字电路硬件设计系列(六)之FPGA配置引脚的设计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数字电路硬件设计系列(六)之FPGA配置引脚的设计


不同的FPGA种类,配置的方式可能有稍许的差别。此处我们主要以7系列中XC7A200TFBG676为例,讲解FPGA的主要配置引脚。

1 简介

工具制程工艺的不同,FPGA主要可以分为16nm、20nm、28nm。不停的制程工艺下,有不同的产品,详细将下:

数字电路硬件设计系列(六)之FPGA配置引脚的设计

2 BANK 介绍

在FPGA的设计过程中,将FPGA的IO口划分为不同的BANK,常见的BANK有HP BANKHR BANKHD BANK

BANK

HR BANKA

HP BANK

HD BANK

全称

High Range

High Performance

High Desity

电压范围

1.2~3.3V

1.0~1.8V

1.2~3.3V

接口速率

以类型有关

支持高速接口

支持低速接口

IO PIN数

50

52

24

差分对数

24

24

12

特别地,FPGA的配置关键一般均处于BANK0。

3 配置管脚说明

BANK0配置的引脚如下图所示:

数字电路硬件设计系列(六)之FPGA配置引脚的设计

接下来,分别对每个配置引脚做详细的说明

3.1 DXP与DXN配置

DXP、DXN 热敏二极管温度传感器引脚,在BANK0热二极管被允许接入使用DXP和DXN引脚,当不使用时,连GND。在设计该部分电路时,可以使用MAX6642替代热敏二极管。大多数热敏二极管温度传感器,包括MAX1617和MAX6654,与二极管都有两个连接点:DXP和DXN。DXP连接至热敏二极管的阳极,源出二极管偏置电流。DXN吸入偏置电流,并将阴极偏置在0.7V左右。具体的连接方式见下图:

数字电路硬件设计系列(六)之FPGA配置引脚的设计

MAX6642只有一个DXP端,与热敏二极管的阳极相连,该器件没有DXN端,而是将阴极直接与地相连。这就需要对电路板做出一些修改,如图2所示。注意,GND同时用作电源地和阴极连接,因此热敏二极管的阴极需在图2所示MAX6642处接地。热敏二极管与MAX6642之间不应有其它与地相连的引线,因为地电流通过引线将产生小的电压降,直接影响温度测量精度。具体的连接方式见下图:

数字电路硬件设计系列(六)之FPGA配置引脚的设计

3.2 VCCADC配置

XADC的工作电源为1.8V,第二个是XADC的采样参考电压,VREFP VREFN两个引脚,为了简化硬件设计,此处采用内部参考电压,所以两个引脚均需接地。

3.3 VP和VN配置

  • VRN 这个引脚针对DCI电压的N晶体管参考电阻,每个bank,用一个10K的电阻拉高

  • VRP 这个引脚针对DCI电压的P晶体管参考电阻,每个bank,用一个10K的电阻拉低

3.4 VCCBATT

VCCBATT是FPGA内部易失性存储器的电池备份电源用于存储AES解密器的密钥。 对于需要来自易失性密钥存储区的解密密钥的加密比特流,将此引脚连接到电池以在FPGA未供电时保留密钥。 如果不要求使用易失性密钥存储区中的解密密钥,请将此引脚连接到GND或VCCAUX。 引脚名称包含“_0”存储区标识,但它不是I / O,不受VCCO_0的影响。官方电路如下:

数字电路硬件设计系列(六)之FPGA配置引脚的设计

3.5 配置模式

常见的配置模式主要有七种,分别是主串配置模式主SelectMAP配置模式主SPI FLASH配置模式、主BPI FLASH配置模式从串配置模式从SelectMAP配置模式JTAG配置模式。配置工作模式我们只需要配置M[2:0]即可,具体的配置方式如下:

数字电路硬件设计系列(六)之FPGA配置引脚的设计

关于FPGA的配置模式,我们一般使用主SPI比较常见,此处我们针对这种模式进行分析:文章来源地址https://www.toymoban.com/news/detail-455782.html

数字电路硬件设计系列(六)之FPGA配置引脚的设计

到了这里,关于数字电路硬件设计系列(六)之FPGA配置引脚的设计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数字电路硬件设计系列(三)之缓启电路设计

            在一些大电压、大电流的产品中,上电的瞬间通常会有较大的电流冲击,下图是一款产品上电过程中波形。最大的电流达到14.2A,这种过流有可能损坏电子元器件。 电流过充波形 解决上述问题,通常采取的策略是在电源的入口增加 缓启动电路 ,也成为 软起动 。

    2024年02月06日
    浏览(39)
  • 数字电路硬件设计系列(十)之RS485电路设计

    RS485通信属于串口通信中的半双工通信,RS485具有支持多节点(32个节点)、传输距离远(最大1219m)、接收灵敏度高(200mV电压)、连接简单(在构成通信网络时,仅需要一对双绞线作传输线)、能抑制共模干扰(差分传输)、成本低廉等特点,最高的传输速率可达10Mbps。在多

    2024年02月06日
    浏览(59)
  • 数字电路硬件设计系列(十七)之上电时序控制电路

    上电时序,也叫做Power-up Sequence,是指电源时序关系。 下面 就是一系列电源的上电的先后关系: 采用不同的电容来控制上电延时时间的长短,具体的电路见下图: 这种上电时序控制的方式, 电路结构简单 ,但是 延时时间难以精确的控制 。 在FPGA的电源时序控制中,应用十

    2024年02月12日
    浏览(31)
  • 数字电路硬件设计系列(七)之泄放电路设计

    泄放电路就是将一部分能量转换成热或者其它形式能量的电路。 单板断电后,LED灯长时间没有熄灭,就是对储能器件的能量没有合理的泄放掉。 余电快速泄放电路 ,即 放电电路 ,用在需要快速反复开关电源,且负载电路上有大容量电容的场景。断开电源开关后,如果负载

    2024年02月09日
    浏览(86)
  • 数字电路硬件设计系列(一)之电源入口设计(保险丝+TVS管+防反接电路)

            板载的电源设计通常包含三个部分: 保险丝、TVS管、防反接电路 。关于这三者的顺序,不同人有不同的理解。我的理解:保险丝的应是板载的第一道防护,浪涌可能对防反接电路上的器件造成不可逆的损坏,因此TVS管应该在防反接电路的前端。(如有不同的理解

    2024年02月06日
    浏览(49)
  • 数字电路硬件设计系列(五)之AT89C51/C52最小系统设计

    AT89C51/C52是指两个系列的产品,具体包含 AT89C51、AT89C52 ,但是最小系统的组成基本上相差不大。最小系统通常包括: 电源 、 复位 、 时钟 、 程序下载 。 讲解内容以 AT89C52 为例,对 AT89C52 最小系统进行详细讲解。 与STM32不同,AT89C52不仅可以3.3V供电,还能使用5V进行供电。通

    2024年02月11日
    浏览(30)
  • 基于FPGA的音乐播放器硬件电路设计

    基于FPGA的音乐播放器硬件电路设计 随着嵌入式系统技术的不断发展,音乐播放器作为一种便携式设备得到了广泛的应用。本文将介绍一种基于FPGA(Field Programmable Gate Array)的音乐播放器硬件电路设计方案,该方案可以实现高质量的音频播放和文件存储功能。 系统概述 基于

    2024年02月02日
    浏览(40)
  • 电子技术课程设计基于FPGA的音乐硬件演奏电路的设计与实现

    【ChatGPT】前些天发现了一个巨牛的人工智能学习电子书,通俗易懂,风趣幽默,无广告,忍不住分享一下给大家。(点击查看学习资料) wx供重浩:创享日记 对话框发送:乐曲电路 免费获取完整无水印论文报告(包含电路图) 1、课程设计题目 设计一个乐曲演奏电路,能够

    2024年02月05日
    浏览(28)
  • 基于FPGA的相控阵雷达波束控制系统设计(3)第3章子阵运算处理模块硬件电路设计

    第3章子阵运算处理模块硬件电路设计 确定使用查表法实现波控系统方案以后,需要对它的硬件电路进行设计。波控系统的硬件电路主要由波控主机和子阵模块两部分组成。 波控主机在一般情况下都会使用通用成熟的模块,不需要我们进行设计。子阵模块的硬件电路的设计是

    2024年01月17日
    浏览(31)
  • 全定制FPGA硬件电路设计实现最大公约数求取算法(Quartus II)

    目录 一、设计需求 二、设计工具及版本 三、设计原理及结构方案 四、电路设计描述 1. 32位D触发器 2. 32位多路选择器 3. 32位减法器 4. 32位求余电路 5. GCDOUT信号产生电路 6. DONE_L信号产生电路 五、仿真激励设计方案及电路仿真结构 六、设计总结 当前,FPGA设计在很多场合得到

    2024年02月20日
    浏览(22)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包